Use of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors for the Treatment of Anemia in Chronic Kidney Disease: What HIF?

https://www.medicalnewstoday.com/articles/320196

Sarah B. Edwards, Pharm.D. PGY-2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy

Pharmacist Learning Objectives

- 1. Identify the place in therapy of erythropoiesis-stimulating agents (ESA) for the treatment of anemia of chronic kidney disease (CKD) in patients undergoing hemodialysis (HD)
- 2. Recognize the black box warning associated with erythropoiesis-stimulating agents (ESA)
- 3. Describe the effects of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI) on erythropoietin, hepcidin, and iron
- 4. Summarize current literature comparing the use of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI) to erythropoiesis-stimulating agents (ESA) for the treatment of anemia of chronic kidney disease (CKD) in patients undergoing hemodialysis (HD)
- 5. Given a patient case, select an appropriate treatment regimen for a patient with anemia of chronic kidney disease (CKD) undergoing hemodialysis (HD)

Pharmacy Technician Learning Objectives

- 1. Recognize two generic erythropoiesis-stimulating agents (ESA)
- 2. Recognize the black box warning associated with erythropoiesis-stimulating agents (ESA)
- 3. Recall the randomized controlled trial that evaluated the use of daprodustat in patients with anemia of chronic kidney disease (CKD) undergoing dialysis
- 4. Given a patient case, recognize the benefits of using hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) for the treatment of anemia of chronic kidney disease (CKD) in patients undergoing hemodialysis (HD)

Appreviations			
Abbreviation	Meaning	Abbreviation	Meaning
ACR	Albumin to Creatinine Ratio	KDIGO	Kidney Disease Improving Global
			Outcomes
BUN	Blood Urea Nitrogen	LVH	Left Ventricular Hypertrophy
CHF	Congestive Heart Failure	MBD	Mineral and Bone Disorder
CI	Confidence Interval	МІ	Myocardial Infarction
CKD	Chronic Kidney Disease	ND	Non-Dialysis
CVA	Cerebrovascular Accident; Stroke	NYHA	New York Heart Association
DD-CKD	Dialysis-Dependent CKD	PD	Peritoneal Dialysis
DILI	Drug-Induced Liver Injury	PHD	Prolyl Hydroxylase Domain; Prolyl
			Hydroxylase Enzyme
DM	Diabetes Mellitus	РО	By Mouth; Oral
EPO	Erythropoietin (endogenous)	PRCA	Pure Red Cell Aplasia
ESA	Erythropoiesis Stimulating Agent	QoL	Quality of Life
ESRD	End Stage Renal Disease	RBC	Red Blood Cell
GERD	Gastroesophageal Reflux Disease	RCT	Randomized Controlled Trial
GFR	Glomerular Filtration Rate	RR	Risk Ratio
GIB	Gastrointestinal Bleed	RRT	Renal Replacement Therapy
HD	Hemodialysis	SMD	Standardized Mean Difference
HF	Heart Failure	SubQ	Subcutaneous
Hgb	Hemoglobin	T2DM	Type 2 Diabetes Mellitus
HIF-PHI	Hypoxia-Inducible Factor Prolyl	TEAE	Treatment-Emergent Adverse Event
	Hydroxylase Inhibitor		
HR	Hazard Ratio	TIBC	Total Iron Binding Capacity
HTN	Hypertension	TIW	Three times weekly
IDA	Iron Deficiency Anemia	TSAT	Transferrin Saturation
IV	Intravenous	VTE	Venous Thromboembolism

hhroviations

Introduction: Chronic Kidney Disease (CKD)¹⁻²

- Longstanding, progressive deterioration of kidney function¹⁻²
 - Renal dysfunction (structural or functional abnormalities) must be present for ≥3 months to be considered chronic
 - Classified based on glomerular filtration rate (GFR); albuminuria due to CKD is further classified by the albumin to creatinine ratio (ACR)

Stage	GFR (mL/min/1.73 m ²)	
G1	≥90	
G2	60-90	
G3a	45-60	
G3b	30-44	
G4	15-29	
G5	<15	

Category	Albumin to creatinine ratio (mg/g)
A1	<30
A2	30-300
A3	>300

Table 1: CKD Classification by GFR

- Dialysis (i.e., hemodialysis, peritoneal dialysis) usually initiated when¹
 - Patient has uremic symptoms (nausea, vomiting, pericarditis, etc.)
 - There is difficulty controlling fluid overload, electrolyte imbalances (e.g., hyperkalemia) or acidosis with current lifestyle and medication interventions
- Etiology^{1,3}
 - o Diabetic nephropathy and hypertensive nephrosclerosis are the most frequent causes
 - Glomerulonephritis
 - Urinary tract obstructions, nephrolithiasis
 - Recurrent kidney infections
- Epidemiology^{1,4-5}
 - Approximately 14.9% of people in the United States have CKD as of 2018
 - Minority populations have a higher risk of development due to prevalence of diabetes mellitus and hypertension

Population at Risk	Statistics	
	35% of people with CKD in the United States	
Black or African Amorican	11-13% diagnosed with diabetes mellitus (DM)	
Black of African Afriencan	6x more likely to get CKD from hypertension (HTN) than white Americans	
	4x as likely to develop renal failure as white Americans	
	Number of people with CKD increased by >70% since 2000	
Hispanis or Lating	12-13% diagnosed with DM; 25% aged ≥45 years diagnosed with DM	
	22.5% diagnosed with HTN	
	1.3x more likely to be diagnosed with CKD than white Americans	
Asian American	19% diagnosed with HTN	
American Indian	14.7% diagnosed with DM; 30% diagnosed with HTN	
	2x more likely to have DM (and die from DM) compared to white Americans	
Alaska Native	1.2x more likely to be diagnosed with CKD compared to white Americans	
Hawaiian Native	6x more likely to die from diabetes compared to white Americans	
Other Pacific Islander	19% diagnosed with HTN	
L		

Table 3: Minority Populations and Complications Associated with Diabetes Mellitus, Hypertension, and Chronic Kidney Disease

- Morbidity and Mortality⁶
 - o Responsible for 1.2 million deaths worldwide in 2017 (12th leading cause of death)
 - o 35.8 million disability-adjusted life years in 2017

Anemia of Chronic Kidney Disease⁷⁻⁹

- "Most common complication of CKD"
- Hemoglobin (Hgb) less than 13 g/dL in men, or less than 12 g/dL in women

Anemia of Chronic Disease⁷

Decline in renal function

Decreased erythropoietin (EPO) production Decreased production of RBCs

- Red blood cells (RBCs) are same size (normocytic) and with normal color (normochromic)
- Red blood cells are underproduced by the bone marrow due to decreased EPO (hypoproliferative)
- Starts to develop when GFR < 60 mL/min/1.73 m²; as renal function declines, anemia worsens

Iron Deficiency Anemia⁷⁻⁹

- Patients with CKD suffer from both absolute and functional iron deficiency anemia (IDA)
- Absolute reduced or absent iron stores in bone marrow, liver, and spleen
 - Loss of blood during hemodialysis
 - Impaired dietary iron absorption
 - Gastrointestinal bleeding (GIB)
- Functional normal iron stores, however iron is being used elsewhere and is unavailable for erythropoiesis
 - o Hepcidin Peptide hormone produced by liver that regulates iron absorption and metabolism
 - Regulated by iron stores, hypoxia, inflammation, and erythropoiesis
 - Renally eliminated → accumulates in renal dysfunction
 - $\circ \quad \mbox{Ferroportin-transport protein responsible for uptake of iron}$
 - Found in enterocytes iron absorption in the duodenum and proximal jejunum
 - Found in reticuloendothelial cells (e.g., macrophages) iron absorption from senescent RBCs and recycling for new RBCs
 - Bound and degraded by hepcidin → decreased iron absorption

Figure 1: Pathophysiology of Anemia of CKD

Outcomes of Anemia of CKD⁸⁻¹¹

Reduced Quality of Life (QoL) Development of Left Ventricular Hypertrophy

Increased risk of adverse renal and cardiovascular outcomes

Increased mortality

Guideline Recommendations for the Treatment of Anemia of Chronic Kidney Disease¹²⁻¹⁴

Definition of Anemia¹²⁻¹⁴ (Table 4)

	2012 Kidney Disease Improving Global Outcomes (KDIGO)	2015 Japanese Society for Dialysis Therapy: Guidelines for Renal Anemia in CKD	2021 National Institute for Health and Care Excellence (NICE) Guidelines on Chronic Kidney Disease: Assessment and Management
Hemoglobin	Male: <13 g/dL Female: <12 g/dL	Male: Age <60: <13.5 g/dL Age 60-69: <12.0 g/dL Age ≥70: <11.0 g/dL Female: Age <60: <11.5 g/dL Age 60-69: <10.5 g/dL Age ≥70: <10.5 g/dL	Adult, children, young people: <11 g/dL Less than 2 years old: <10.5 g/dL

Iron Evaluation and Administration¹²⁻¹⁴ (Table 5)

	2012 Kidney Disease Improving Global Outcomes (KDIGO)	2015 Japanese Society for Dialysis Therapy: Guidelines for Renal Anemia in CKD	2021 National Institute for Health and Care Excellence (NICE) Guidelines on Chronic Kidney Disease: Assessment and Management
Not on Iron or ESA	 Hemodialysis (HD): IV iron Non-dialysis (ND): 1-3 months PO iron if both: a) Desire to increase Hgb without starting ESA b) TSAT ≤30%, ferritin ≤500 ng/mL 	 Iron therapy prior to ESA therapy if ferritin level <50 ng/mL HD: IV iron ND, PD: PO iron 	 HD: Trial IV iron; offer PO iron if IV is contraindicated or personal choice ND: Trial PO iron prior to IV iron; offer IV iron if after 3 months goal Hgb levels are not reached
On ESA but not Iron	 HD: IV iron ND: 1-3 months PO iron if both: a) Desire to increase Hgb or decrease in ESA dose b) TSAT ≤30%, ferritin ≤500 ng/mL 	 Iron therapy for those on ESA and cannot maintain Hgb level, when ferritin <100 ng/mL and TSAT <20% Do not administer iron that targets serum ferritin ≥300 ng/mL 	 Offer IV iron regardless of dialysis status Reserve PO iron for those with contraindications to IV iron, or personal choice
Evaluation	 TSAT, ferritin at baseline and every 3 months during ESA therapy* More frequent monitoring when: a) Initiating or increasing ESA dose (e.g., weekly) b) Blood loss c) Monitoring response after IV iron d) Other situations of iron store depletion 	 TSAT, ferritin for iron indices At least monthly on iron At least every 3 months while not on iron 	 TSAT, ferritin for iron indices No earlier than 1 week after IV iron HD: Every 1-3 months ND: Every 3 months Maximum iron levels in anemia of CKD: Ferritin should not be >800 ng/mL; review when ~500 ng/mL

*Iron deficiency: TSAT ≤20% and ferritin ≤100 ng/mL (ND, PD) or ≤200 ng/mL (HD)

Erythropoiesis Stimulating Agent Evaluation and Administration ¹²⁻¹⁴ (Table 6)				
	2012 Kidney Disease Improving Global Outcomes (KDIGO)	2015 Japanese Society for Dialysis Therapy: Guidelines for Renal Anemia in CKD	2021 National Institute for Health and Care Excellence (NICE) Guidelines on Chronic Kidney Disease: Assessment and Management	
Initiation	 HD: Hgb 9-10 g/dL*; may use to avoid Hgb falling below 9 g/dL ND: Hgb <10 g/dL and assessed: a) Rate of fall of Hgb, symptoms of anemia b) Prior response to iron therapy c) Risk of needing transfusion, ESA administration *May be started in patients with Hgb ≥10 g/dL as some have improvements in quality of life at higher concentrations (Not graded) 	- HD: Hgb <10 g/dL - ND, PD: Hgb <11 g/dL	- Hgb <11 g/dL, regardless of dialysis status	
Maintenance	- Do NOT maintain Hgb above 11.5 g/dL - Do NOT intentionally increase Hgb ≥13 g/dL	 HD: 10-12 g/dL ND, PD: 11-13 g/dL* *If ND patient has previous history of CVD or other complication, reduce dose and/or discontinue ESA when Hgb >12 g/dL 	 Between 10-12 g/dL Keep rate of Hgb increase between 1-2 g/dL per month Monitor every 2-4 weeks during ESA induction, then every 1-3 months for maintenance AVOID Hgb >12 g/dL due to risk of death and serious adverse CV events 	
Administration	- HD: IV or subcutaneous (SubQ) - ND, peritoneal dialysis (PD): SubQ preferred	- HD: IV - ND, PD: SubQ	 Consider the following: a) patient population (HD vs ND, PD) b) Pain of injection, frequency of administration c) Patient lifestyle and preferences, cost d) Efficacy (SubQ vs IV, short- acting vs long-acting) 	
Hypo- responsiveness	 Do not go beyond double the original ESA dose Treat specific causes of poor response (iron stores, blood loss, etc.) 	 Patient is more likely to have poor prognosis Weigh ESA side effects: hypertension, thromboembolism, pure red cell aplasia (PRCA) 	 Treat specific/other causes of anemia (intercurrent illness, chronic blood loss, PRCA) Considered resistant if Hgb range not achieved despite large doses of IV or SubQ ESA, or continued need to administering high doses of ESAs 	

Complications of Red Blood Cell Transfusions¹⁵

Transfusionassociated Iron overload infections Allosensitization
 Building antibodies to attack future RBCs

Febrile nonhemolytic reactions Kidney transplant rejection

Page **6** of **26**

Erythropoiesis Stimulating Agents: Pharmacotherapy¹⁶⁻²¹

• Recombinant versions of EPO that stimulate production of red blood cells in the bone marrow

Stimulate erythroid progenitor cell differentiation

RBC proliferation, prevention of apoptosis

Increased hemoglobin and hematocrit levels

• Efficacy

o Reduces the need for blood transfusions

O improves symptoms of fatigue	0	Improves symptoms of fatigue
--------------------------------	---	------------------------------

Name	Epoetin alfa (Epogen, Procrit, Retacrit)		Edema, hypertension, diarrhea, injection
Indications	Anemia secondary to CKD Chemotherapy-induced anemia Antiretroviral-induced anemia (zidovudine)	Adverse Effects	site thrombosis, pruritus, myalgia, fatigue, seizures Rare: pure red cell aplasia
Dose (Anemia of CKD)	 <u>Dialysis</u>: 50-100 units/kg IV 3 times a week Non-dialysis: 50-100 units/kg IV or SubQ once weekly, or 10,000-20,000 units IV or SubQ every other week 	Black Box Warning	Increased risk of myocardial infarction (MI), stroke (CVA), venous thromboembolism (VTE), and mortality when targeting Hgb >11 g/dL Increased risk of cancer recurrence
Monitoring Elimination	 Baseline Hgb and weekly Initiate when Hgb <10 g/dL Reduce dose or halt therapy if Hgb approaches/exceeds 11 g/dL (dialysis) or 10 g/dL (ND); Hgb should raise no faster than 1 g/dL every 2 weeks Iron: TSAT >20% and ferritin >100 ng/mL for adequate iron stores Renal (minimal): T_{1/2} = 3-14 hr in CKD 	Pearls	 In ND patients, consider only using if Hgb decline would result in RBC transfusion Administer iron if low stores or patient is ESA hyporesponsive
Table 7: Epoet	in alfa Drug Information		
Name	Darbepoetin (Aranesp)		Cough, dyspnea, edema, hypertension.
Indications	Anemia secondary to CKD Chemotherapy-induced anemia	Adverse Effects	diarrhea, injection site thrombosis, myalgia, fatigue, seizures Rare: pure red cell aplasia
Indications Dose (Anemia of CKD)	Anemia secondary to CKD Chemotherapy-induced anemia - <u>Dialysis</u> : 0.45 mcg/kg IV or SubQ once weekly or 0.75 mcg/kg every 2 weeks - ND: 0.45 mcg/kg IV or SubQ once every 4 weeks	Adverse Effects Black Box Warning	diarrhea, injection site thrombosis, myalgia, fatigue, seizures Rare: pure red cell aplasia Increased risk of MI, CVA, VTE, and mortality Increased risk of cancer recurrence
Indications Dose (Anemia of CKD) Monitoring	Anemia secondary to CKD Chemotherapy-induced anemia - <u>Dialysis</u> : 0.45 mcg/kg IV or SubQ once weekly or 0.75 mcg/kg every 2 weeks - ND: 0.45 mcg/kg IV or SubQ once every 4 weeks - Baseline Hgb and weekly - Initiate when Hgb <10 g/dL - Reduce dose or halt therapy when Hgb approaches/exceeds 11 g/dL (dialysis) or 10 g/dL (ND); Hgb should raise no faster than 1 g/dL every 2 weeks - Iron: TSAT >20% and ferritin >100 ng/mL for adequate iron stores Benal (minimal): Tug = 46 hr	Adverse Effects Black Box Warning Pearls	diarrhea, injection site thrombosis, myalgia, fatigue, seizures Rare: pure red cell aplasia Increased risk of MI, CVA, VTE, and mortality Increased risk of cancer recurrence - If desired response is not achieved at 12 weeks despite dose titrations, further dose increases will likely not be beneficial - Administer iron if low stores or patient is ESA hyporesponsive
Indications Dose (Anemia of CKD) Monitoring Elimination	Anemia secondary to CKD Chemotherapy-induced anemia - <u>Dialysis</u> : 0.45 mcg/kg IV or SubQ once weekly or 0.75 mcg/kg every 2 weeks - ND: 0.45 mcg/kg IV or SubQ once every 4 weeks - Baseline Hgb and weekly - Initiate when Hgb <10 g/dL - Reduce dose or halt therapy when Hgb approaches/exceeds 11 g/dL (dialysis) or 10 g/dL (ND); Hgb should raise no faster than 1 g/dL every 2 weeks - Iron: TSAT >20% and ferritin >100 ng/mL for adequate iron stores Renal (minimal): T _{1/2} = 46 hr Metabolized by hepatic galactose receptors	Adverse Effects Black Box Warning Pearls	diarrhea, injection site thrombosis, myalgia, fatigue, seizures Rare: pure red cell aplasia Increased risk of MI, CVA, VTE, and mortality Increased risk of cancer recurrence - If desired response is not achieved at 12 weeks despite dose titrations, further dose increases will likely not be beneficial - Administer iron if low stores or patient is ESA hyporesponsive

Landmark Studies Evaluating ESAs¹⁹⁻²¹ (Table 9)

- • •		
Trial	CHOIR	TREAT
Agent	Epoetin alfa, high Hgb goal 13.5 g/dL, low Hgb goal 11.3 g/dL	Darbepoetin, Hgb goal 13 g/dL
Population	N=1432 Patients with CKD	N=4038 Patients with T2DM, CKD, and anemia
eGFR	15-50 mL/min/1.73 m ²	20-60 mL/min/1.73 m ²
Baseline Hgb	<11 g/dL	≤11 g/dL
Median follow-up	16 months	29.1 months
Primary Outcomes	 Composite of death, MI, hospitalization for congestive heart failure (CHF) without renal replacement therapy (RRT), or CVA: HR 1.34 (P=0.03) 	 Death or cardiovascular event: HR 1.05 (P=0.41) Death or end-stage renal disease: HR 1.06 (P=0.29)
Secondary Outcomes	 Hospitalization for CV causes: HR 1.23 (P=0.03) Hospitalization for any cause: HR 1.18 (P=0.03) 	 Stroke: HR 1.92 (P<0.001, NNH 40) Cancer-related death: 14/188 darbepoetin vs 1/160 placebo (P=0.002)
Other Notes	 Goal Hgb of 13.5 g/dL offered no additional quality of life benefit High Hgb group did not achieve 13.5 g/dL (only got to 12.6 g/dL) This study established the ESA black box warning 	 No increased risk of cardiovascular composite outcome, but increased incidence of stroke Improvement in fatigue symptoms based on FACT-Fatigue symptom score: 54.7% vs 49.5% (P=0.002)

New Kid on the Block: Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHIs)²²⁻²⁶

Figure 2: Possible Effects of HIF-PHIs²³

Normal Pathophysiology of HIF²²

• Hypoxia-Inducible Factor (HIF)

- $\circ~$ Heterodimeric protein with α and β subunits that activates EPO gene transcription when hypoxia is detected in the body
- o Also activates gene transcription associated with iron uptake and transport
- o Stimulates endogenous EPO production in the liver and kidney, and increased iron availability

• Prolyl Hydroxylase Domains (PHDs)

- \circ Prolyl-hydroxylase enzymes that hydroxylase the HIF- α subunit
 - Hydroxylation results in HIF degradation
 - Requires oxygen to perform function
- PHD1, PHD2, and PHD3 isoforms

Normoxia - Adequate Oxygen Status
 PHD binds to HIF and activates degradation of protein

•EPO production and iron uptake normal

Hypoxia - Low Oxygen Status

- •PHD expression reduced, HIF protein stabilized
- •HIF induces gene transcription of EPO and iron regulation
- •EPO and iron uptake ramped up

Figure 3: Normal Physiology of HIF and PHD²³

Mechanism of action of HIF-PHIs²³

- Reversible inhibitor of PHDs
- Stabilizes HIF proteins HIF-1α and HIF-2α
- Increases HIF-regulated gene expression

Effects of HIF-PHIs^{23,25}

- Erythropoietin enhanced endogenous production via HIF-mediated gene transcription
- Iron enhanced absorption and mobilization via decrease in hepcidin and maintained expression of ferroportin
- Hepcidin decreased production due to perceived hypoxic state and erythropoiesis
- **Cholesterol** hypothesis that because of the perceived hypoxic state, low density lipoprotein receptor expression is increased, and lipid uptake is enhanced for overall lowering of cholesterol

Question: What place in therapy should HIF-PHIs have for the treatment of anemia of CKD, in the context of hemodialysis, in the United States?

Table #10: The efficacy of Roxadustat for the treatment of anemia in dialysis dependent chronic kidney disease patients: an updated systematic review and meta-analysis of randomized clinical trials				
Objective	To investigate the efficacy and safety of roxadust	at for anemia in dialysis-dependent CKD patient		
	Methods			
Study design	Updated systematic review and meta-analysis of	10 randomized controlled trials (RCTs)		
Study Selection	 Registered with Preferred Reporting for Systematic Review and Meta-Analysis (PRISMA) and Cochrane Handbook for Systematic Reviews of Interventions Utilized PubMed, EMBASE, Scopus, Web of Science, Cochrane Central, and Google Scholar Timeframe: Time of inception to July 2021 Studies were included with the following parameters: Population: Diagnosed with CKD and on dialysis Intervention: Roxadustat Comparator: ESA or placebo Outcome: Change in hemoglobin level and iron utilization parameters Studies were excluded if: Observational Non-randomized No comparator group Search protocol: (Roxadustat OR ASP1517 OR FG4592 OR "FG-4592") AND (kidney OR renal) AND (Anemia) 			
Data Extraction	 Each RCT abstracted for: first author, published date, country, study design, phase, study period, number of patients, age, gender, and roxadustat dose T 	hree reviewers independently extracted data using Aicrosoft Excel Discrepancies resolved through discussion wo reviewers performed meta-analysis; results Eviewed by two separate authors		
Outcomes	PrimarySec• Changes in hemoglobin level• T• Iron utilization parameters: ferritin, serum iron, TSAT, TIBC, transferrin, hepcidin, Hgb in reticulocytes• S	ondary reatment-emergent adverse effects (TEAEs) erious adverse events		
Statistical Analysis	 Outcomes of interest used Mantel-Haenszel method: risk ratios for dichotomous outcomes, standardized mean difference (SMD) for continuous outcomes Heterogeneity estimated with Cochran's Q Test: fixed-effects model for low heterogeneity (P<0.10, I²<50%), random-effects model for high heterogeneity (P≥0.10, I²≥50%) Sensitivity analysis based on removing one RCT at a time Publication bias assessed with Egger regression test 			

Results

	Study	Country (n of sit <u>es)</u>	Population Characteristics	Roxadustat Dose	Study Duratio <u>n</u>
	Akizawa et al. 2020	Japan (58)	N=301; age ~65±11 yr; male ~70%; dialysis >12 weeks	70 or 100 mg TIW	24 weeks
	Charytan et al. 2021	USA (76)	N=741; age ~58±13 yr; male ~50-60%; dialysis 2 weeks to 4 months	70-200 mg TIW	52 weeks
	Chen et al. 2017	China (8)	N=96; age ~50±10 yr; male 60.8% ROX, 95.1% rhEPO; dialysis ≥4 months	Weight based (1.1- 2.3 mg/kg TIW)	6 weeks
	Chen et al. 2019	China	N=304; age ~50±12 yr; male ~60%; dialysis ≥4 months	100 mg (BW 45 to <60 kg) or 120 mg (BW ≥60 kg)	26 weeks
Study	Provenzano et al. 2016	USA	N=90; age ~57±12 yr; male ~61- 67%; dialysis ≥4 months	Weight based (1.0- 2.0 mg/kg TIW)	19 weeks
Characteristics	Provenzano et al. 2021	USA	N=1,043; age ~54±15 yr; male ~60%, dialysis 2 weeks to 4 months	70 or 100 mg TIW	52 weeks
	NCT02278341 (PYRENEES) 2019	Worldwide (150)	N=836; age ~61±13 yr; male ~57%; dialysis ≥4 months	100, 150, or 200 mg	104 weeks
	Hou et al. 2021	China	N=129; age ~48±12 yr; male ~56%; dialysis ≥12 months	100 mg (BW 45 to <60 kg) or 120 mg (BW ≥60 kg)	24 weeks
	NCT01888445 2018	Japan (28)	N=127; age ~61±8 yr; male ~72%; dialysis 2-5 weeks	50, 70, or 100 mg TIW	24 weeks
	NCT02174731 (ROCKIES) 2020	18 Countries (197)	N=2,101; age ~54±15 yr; male ~60%; dialysis 2 weeks to 4 months	N/A	4 years
	BW: body weight, rh weekly, yr: year	EPO: recom	binant human erythropoietin, ROX	(: roxadustat, TIW: thi	ree times

	Study	Change in Hemoglobin, SMD (g/dL) [95% CI]	Change in Serum Iron, SMD (μmol/L) [95% CI]	Serious Adverse Events Risk Ratio [95% CI]		
	Akizawa et al. 2020	-0.56 [-0.81, -0.30]	0.35 [0.12, 0.58]	1.43 [0.87, 2.35]		
	Charytan et al. 2021	0.25 [0.10, 0.39]	0.22 [0.04, 0.39]	0.98 [0.88, 1.09]		
	Chen et al. 2017	0.59 [0.09, 1.09]	0.08 [-0.41, 0.57]			
	Chen et al. 2019	0.19 [-0.05, 0.43]	0.48 [0.22, 0.74]	1.42 [0.72, 2.80]		
	Provenzano et al. 2016	0.00 [-0.49, 0.49]	0.27 [-0.22, 0.76]	1.44 [0.65, 3.23]		
	Provenzano et al. 2021	0.17 [0.05, 0.29]	0.21 [0.07, 0.36]	1.06 [0.93, 1.22]		
Outcomes	NCT02278341 (PYRENEES) 2019	0.23 [0.09, 0.36]		1.13 [0.98, 1.30]		
	Hou et al. 2021	1.49 [1.08, 1.90]	0.40 [0.02, 0.79]	1.00 [0.09, 10.72]		
	NCT01888445 2018	0.01 [-0.44, 0.46]		2.47 [0.60, 10.24]		
	NCT02174731 (ROCKIES) 2020	0.07 [-0.02, 0.16]		1.00 [0.93, 1.08]		
	Total	0.21 [0.02, 0.39]	0.27 [0.18, 0.36]	1.04 [0.99, 1.10]		
	Heterogeneity	l ² =89%	l ² =0%	l ² =2%		
	 Treatment Emergent Adverse Effects (TEAEs): RR 1.03 [1.01, 1.05], driven by ROCKIES study (weig 40.6%); all other studies included did not find statistical significance Gastrointestinal adverse effects: RR 1.40 [1.04, 1.88], driven by ROCKIES (weight 18.0%), Charytar et al. (weight 18.1%), and Provenzano et al. 2021 (weight 16.4%); I²=79% 					
		uverse effects: RR 1.03 [0.5	90, 1.18], driven by ROCKIES S	study (weight 49.1%)		
Author's Conclusions	Roxadustat is assoc Specifically, roxadu hepcidin. Roxadust	stat increases levels of TIB at is associated with highe	evels and improved iron utili C, serum iron, and transferrin r TEAEs, but no difference in	zation parameters. n, and decreases levels of serious adverse effects.		
Critique	Strengths• Only included randomized controlled trials• Focused on dialysis-dependent CKD patients• Multiple nationalities represented in the trials provided• Reported both efficacy (Hgb, iron) and safety (TEAEs, cardiovascular adverse events)• Weighed studies to proportion significance					
FDA Reasoning	Roxadustat has adequate efficacy compared to ESAs, however the safety events pose a greater risk than benefit. Specifically, there is an increased risk of death, MACE, VTE, vascular access thrombosis, and seizures, based on 4 studies reviewed					
Takeaway Summary	Roxadustat is a reasonable alternative to ESAs for the treatment of anemia of CKD in patients on HD Although there were more treatment-emergent adverse effects reported with roxadustat use, the rate of serious adverse events was not statistically significant, which included cardiovascular adverse effects. The 10 RCTs analyzed show no increased risk of that described by the FDA (e.g. MACF)					
				Page 13 of 2		

Table #11: Safety	y and Efficacy of Vadadustat for Anemia in Patients Undergoi	ng Dialysis (INNO₂VATE)				
Objective	To evaluate the safety and efficacy of vadadustat compared to darbepoetin alfa for the treatment of anomia in patients undergoing hemodialysis or paritoneal dialysis					
	of anemia in patients undergoing hemodialysis or peritoneal	dialysis				
Study design	 Pooled analysis of two phase 3, randomized, open-label, active-controlled, event-driven trials United States, Europe, other regions Trial periods: correction or conversion period (weeks 0-23), maintenance period (weeks 24-52), long-term treatment period (week 53 until end of treatment), and safety follow-up period (4 weeks) Primary evaluation period (weeks 24-36) Secondary evaluation period (weeks 10, 52) 					
Population	 Inclusion Criteria ≥18 years old Have CKD and undergoing dialysis (≥12 weeks prevalent DD-CKD) Limited ESA exposure for incident DD-CKD, ESA exposure required for prevalent DD-CKD (at least 1 dose in last 8 weeks) Serum ferritin ≥100 ng/mL, TSAT ≥20% Hemoglobin Incident DD-CKD trial: 8-11 g/dL Prevalent DD-CKD trial United States: 8-11 g/dL Other countries: 9-12 g/dl 					
Intervention	 1:1 ratio of vadadustat or darbepoetin alfa Vadadustat (PO): 300 mg daily, maximum 600 mg daily (doses of 150, 450, 600 mg available) Darbepoetin alfa (SubQ or IV): Based on previous dose or product label dosing Stratified based on location, NYHA classification, and hemoglobin concentration at trial entry Incident DD-CKD: <9.5 vs ≥9.5 g/dL Prevalent DD-CKD: <10 vs ≥10 g/dL Target Hgb level United States: 10-11 g/dL Other countries: 10-12 g/dL Could use ESAs as rescue therapy starting week 6 if symptoms worsened and Hgb <9.5 g/dL 					
Outcomes	 Efficacy Mean change in hemoglobin from baseline to average concentration during primary evaluation and secondary evaluation periods Safety Primary: First occurrence of an adjudicated major adverse cardiovascular event (MACE), pooled across the two studies Secondary: First occurrence of "expanded MACE" (MACE plus hospitalization for HF or VTE except vascular access failure), pooled across the two studies Composite of death from cardiovascular causes, nonfatal stroke, or nonfatal myocardial infarction 					
Statistical Analysis	 infarction Upper bound of 95% confidence interval set at 1.25 for primary safety end point Lower bound of 95% confidence interval set at -0.75 g/dL for primary efficacy end point Cox regression model to analyze time to first MACE event Covariates: baseline hemoglobin, location, New York Heart Association (NYHA) Class, sex, age (≤65 or >65 years), race, CVD, DM 					

			Re	sults						
				Incident DD-CKD Trial			Prevalent DD-CKD Trial			
	Characteristi	С	Vac	ladustat	Darbeno	etin	Vadadustat		Darbepoetin	
	N=3,923 patier	nts	()	V=181)	alfa (N=1	alfa (N=188))	alfa (N=1777)	
	Age, vr		56	5+14.8	55.6+14	1.6	57.9+13.	, 9	58.4+13.8	
	Male, no. (%)		10	7 (59.1)	113 (60	.1)	990 (55.7	')	1004 (56.5)	
	Racial Group, no. (%)			/ (0012)		,		/		
	White		12	9 (71.3)	143 (76	.1)	1135 (63.	9)	1096 (61.7)	
	Black		38	3 (21.0)	35 (18.	, 6)	432 (24.3	- , ;)	444 (25.0)	
	Asian		1	2 (6.6)	8 (4.3)	76 (4.3)	,	99 (5.6)	
	Hispanic Ethnic Group, no. (%)) 71	L (39.2)	66 (35.	682 (35.1) 682 (38.4		.)	674 (37.9)	
	Hemodialysis, no. (%)	•	15	8 (87.3)	169 (90	.0)	1652 (93.))	1633 (91.0)	
Baseline	Disease History, no. (%	5)				-				
characteristics	DM	-	10	05 (58)	96 (51.	1)	971 (54.6	i)	998 (56.2)	
	CVD		69	9 (38.1)	73 (38.	8)	868 (48.8	3)	932 (52.4)	
	Hemoglobin, g/dL, Me	an (SD)	9	.4±1.1	9.2±1.	1	10.6±0.9)	10.2±0.8	
	<9.5 g/dL		9.	4 (51.9)	99 (52.7	7)				
	≥9.5 g/dL		8	7 (48.1)	89 (47.3	3)				
	<10.0 g/dL					,	620 (34.9))	619 (34.8)	
	>10.0 g/dl						1157 (65.1)	1158 (65.2)	
	Baseline Iron Use no. (%	5)						/		
	PO Iron Only	~)	1	9 (10 5)	9 (4 8)		122 (6.0)		118 (6.6)	
	IV Iron Only		0	2 (50.9)	9 (4.0)		011 (51 2)		952 (49.0)	
	IV and PO Iron			2 (30.0)	110 (58.5)		02 (17)		053 (40.0)	
				0 (9.9)	13 (0.9)	03 (4.7)		05 (4.0)	
	Primary		Mada		D		· IC .			
	Pooled Outcome	:		(N=1947) (N=19		epoet N=1 of	alta		HR (95% CI)	
	Cumulative Probabilit	vofa	(10							
	First MACE. no. (%)	, 01 0	355	(18.2)	377 (19.3		9.3)	0.	96 (0.83-1.11)	
	All-cause Mortality		253	(13.0)	253 (12.9)		.9)			
	Nonfatal MI		76	(3.9)	87 (4.5)		5)			
	Nonfatal Stroke		26	(1.3)	37 (1.		.9)			
	Incident DD-CKD	Vada	dustat (N	stat (N=181) Da		Darbepoetin alfa (N=18			HR (95% CI)	
	MACE, no. (%)		22 (12.3)		24 (12.9)				0.97 (0.536-1.761)	
					Darbepoetin		n alfa			
	Prevalent DD-CKD	Vada	dustat (N=	=1777)	(N=1777)		7)		HR (95% CI)	
Outcomes	MACE, no. (%)		333 (18.8)		353 (20.0))	0.96 (0.828-1.117)		
	Secondary									
	Incident DD-CKD									
	Parameter	Vad	adustat	Darbepo	etin alfa	Mea	n Difference		95% CI	
	Change in Hgb, g/dL									
	Week 24-36	1.2	6±0.11	1.58	±0.11	-0	-0.31±0.11		-0.53 to -0.10	
	Week 40-52	1.4	2±0.13	1.50:	±0.14	-0	-0.07±0.13		-0.34 to 0.19	
	Within goal Hgb, %									
	Week 24-36	4	3.6%	56	9%	9% -				
	Week 40-52	3	9.8%	41.	0%)%				
	RBC Transfusion. %									
	Week 24-36	1	.3%	1.3	3%					
	Week 40-52		.4%	0	7%					
	WEEK 10 JZ	2		0.7%						

Parameter Vadadustat Darbepoetin alfa Mean Difference 95% CI Change in Hgb, g/dL Week 40-52 0.19±0.03 0.36±0.03 -0.17±0.03 -0.23 to -0.10 Week 40-52 0.23±0.04 0.41±0.03 -0.18±0.04 -0.25 to -0.12 Within Goal Hgb, %* Week 40-52 4.3% 50.9% Week 40-52 4.4.3% 50.9% Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.5% Sology Week 40-52 2.0% 1.5% Sology Week 40-52 2.0% 1.5% Sology -		Prevalent DD-CKD								
Safety Image: in Hgb, g/dL Week 24-36 0.19±0.03 0.36±0.03 -0.17±0.03 -0.23 to -0.10 Week 24-36 0.23±0.04 0.41±0.03 -0.18±0.04 -0.25 to -0.12 Within Goal Hgb, %* Week 24-36 19.2% 53.2% RBC Transfusion, % Week 40-52 44.3% 50.9% RBC Transfusion, % Week 40-52 2.0% 1.9% *Based on country-specific target 19.3% *Based on country-specific target 19.47 vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD) Prevelent DD-CKD Prevelent DD-CKD Prevelent DD-CKD Prevelent DD-CKD Prevelent DD-CKD Darbepoetin (Herzyk 3.3% 5.3.5% 55.0% 58.3% Any gruey-related adverse events 3.9% 2.7% 9.6% 3.8% Any gruey-related adverse events 3.9% 2.2% 1.6% 1.5% Vastaut sta is noninferior c		Parameter	Vadadustat	Darbep	oetin alf	a Mean Dif	ference	95% Cl		
Week 24-36 0.19±0.03 0.36±0.03 -0.17±0.03 -0.23 to -0.10 Week 40-52 0.230.04 0.41±0.03 -0.18±0.04 -0.25 to -0.12 Within Goal Hgb, %* Week 24-36 49.2% 53.2% Week 24-36 49.2% 53.2% RBC Transfusion, % Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.9%		Change in Hgb, g/dL								
Week 40-52 0.23±0.04 0.41±0.03 -0.18±0.04 -0.25 to -0.12 Within Goal Hgb, %* Week 40-52 44.3% 50.9% Week 40-52 44.3% 50.9% Week 40-52 2.0% 1.3% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.9% Week 40-52 2.0% 1.9% * Sinilar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadadusta and darbepoetin if an interestical adverse veets ve		Week 24-36	0.19±0.03	0.36	5±0.03	-0.17±	:0.03	-0.23 to -0.10		
Within Goal Hgb, %* Uran in the image of the the image of the image of the image of the image of the image o		Week 40-52	0.23±0.04	0.41	L±0.03	-0.18±	:0.04	-0.25 to -0.12		
Week 24-36 49.2% 53.2% Week 40-52 44.3% 50.9% BBC Transfusion, % Week 24-36 2.0% 1.3% Week 40-52 2.0% 1.9% *Based on country-specific target *Based on country-specific target *Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD 27.6% vs 30.2% weeks 0-23) Vadadustat Darbepoetin (N=176) Vadadustat Darbepoetin alfa (N=186) (N=1768) alfa (N=176 Any serious adverse event 49.7% 56.5% 55.0% 58.3% Any serious adverse events 3.9% 2.7% 9.6% 3.8% Any serious adverse events 3.9% 2.7% 6.0% 4.4% Common adverse events with vadadustat in prevalent DD-CKD events 0.5% 2.2% 1.6% 1.5% Vascular access thrombosis 3.4%		Within Goal Hgb, %*								
Week 40-52 44.3% 50.9% RBC Transfusion, % Week 40-52 2.0% 1.3% *Based on country-specific target *Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadadusta and darbepoetin *Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) Prevalent DD-CKD N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin (N=176) Prevalent DD-CKD Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin (N=176) Prevalent DD-CKD Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin (N=176) Jarbepoetin (N=176) Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin (N=176) Jarbepoetin (N=176) Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin (N=176) Jarbepoetin alfa (N=176) Any serious adverse event 3.9% 2.7% 9.6% 3.8% Any serious adverse events 3.9% 2.7% 9.6% 3.8% Any serious adverse events with vadadustat in prevalent DD-CKD (±10%): HTN, diarrhea, pneumor Conclusions Conduston Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths		Week 24-36 49.2%		53	3.2%		-			
BBC Transfusion, % Week 24-36 2.0% 1.3% Week 24-36 2.0% 1.9% *Based on country-specific target 1.9% *Based on country-specific target 1.9% *Based on country-specific target 1.9% *Based on country-specific target 1.9% *Based on country-specific target 1.9% *Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) Vadadustat Darbepoeitin (N=1768) Vadadustat Darbepoeiti		Week 40-52 44.3%).9%		-			
Week 24-35 2.0% 1.3% Week 40-52 2.0% 1.9% *Based on country-specific target • • Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadadusta and darbepoetin of prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) N=1,947 vadadustat, N=1,955 darbepoetin alfa N=1,947 vadadustat, N=1,955 darbepoetin alfa Incident DD-CKD Prevalent DD-CKD Any serious adverse event 49.7% 56.5% 55.0% 58.3% Any drug-related adverse events 3.9% 2.7% 9.6% 3.8% Any serious adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumor Conclusions and Evaluation 4.4% Conclusions Oral vadadustat is noniferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. 9.0% 1.8% Critique Najority of patients were on prevalent DD-CKD Vadadustat had standardized initial d		RBC Transfusion, %								
Week 40-52 2.0% 1.9% *Based on country-specific target • Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadadusta and darbepoetin • Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) N=1,947 vadadustat, N=1,955 darbepoetin alfa Incident DD-CKD Prevalent DD-CKD Safety Incident UD-CKD Prevalent DD-CKD Prevalent DD-CKD Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Prevalent DD-CKD Prevalent DD-CKD Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa Darbepoetin Vadadustat Darbepoetin Safety N=1,947 vadadustat, N=1,955 darbepoetin alfa St.0% 58.3% Any serious adverse event 3.9% 2.7% 9.6% 3.8% Any drug-related adverse events 0.6% 2.2% 1.6% 1.5% Vascular access thrombosis 3.4% 5.4% 6.0% 4.4% Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Oral vadadustat is noninferior compared to darbepoetin alfa 0.0% 4.4%		Week 24-36 2.0%		1	.3%					
*Based on country-specific target • Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadadusta and darbepoetin (prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) • Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs 30.2% weeks 0-23) • N=1,947 vadadustat, N=1,955 darbepoetin alfa • N=1,947 vadadustat, N=1,955 darbepoetin alfa • N=1,947 vadadustat, N=1,955 darbepoetin (N=1768) • Any serious adverse event 49.7% • Any serious adverse events 3.9% • Any serious drug-related adverse events 0.6% • Any serious drug-related adverse events 0.6% • Common adverse events 0.6% • Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumor Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths • Randomized controlled trial • Diverse populations, specified Hispanic ethnicity • Najority of patients were on prevalent DD-CKD • Najority of patients were on prevalent DD-CKD • Nadustat associated with increased risk of MACE and drug-induced liver injury (DIU). Increased arbepoetin alfa was titrated base on patient's prior doses or dosing protocol • Najority of patients were on prevalent DD-CKD • Najority of patients were on prev		Week 40-52	2.0%	1	.9%		-			
N=1,947 vadadustat, N=1,955 darbepoetin alfaIncider: UD-CKDPreval=: UD-CKDVadadustatDarbepoetinVadadustatDarbepoetinIncider: UD-CKDVadadustatDarbepoetinAny serious adverse events49.7%So 5.%So 7.%So 7.% </th <th></th> <th colspan="5"> *Based on country-specific target Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadad and darbepoetin Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs. 30.2% weeks 0-23) </th> <th>een vadadustat pepoetin</th>		 *Based on country-specific target Similar changes in mean serum concentration of hepcidin, ferritin, and TSAT between vadad and darbepoetin Fewer patients on vadadustat required rescue therapy with ESA compared to darbepoetin (prevalent DD-CKD: 27.6% vs. 30.2% weeks 0-23) 					een vadadustat pepoetin			
Safety Incident D-CKD Prevalent D-CKD Safety Any serious adverse event (N=178) afa (N=186) Vadadustat (N=176) affa		N=1,947 vadadustat, N=	1,955 darbepoet	tin alfa						
Safety Event Vadadustat (N=179) Darbepoeitin alfa (N=186) Vadadustat (N=1768) Darbepoeitin alfa (N=176 Any serious adverse event 49.7% 56.5% 55.0% 58.3% Any drug-related adverse events 3.9% 2.7% 9.6% 3.8% Any serious drug-related adverse events 0.6% 2.2% 1.6% 1.5% Vascular access thrombosis 3.4% 5.4% 6.0% 4.4% Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths • Randomized controlled trial • Open-label • Vadadustat had standardized initial dose wherea darbepoetin alfa was titrated base on patient's prior doses or dosing protocol • Majority of patients were on prevalent DD-CKD • Included hemoglobin baseline and targets for United States • Negorted both efficacy (Hgb) and safety (MACE) • Included baseline iron use, but not changes thereafter Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in difficacy analysis Vadadustat is a reasonable alternative to darbepoetin alfa or the treatment of anemia of CKD in patients. No increased incidence of MACE and drug-induced liver injury (DILI). Increased in patients. No increased incidence of MACE nor			Incident DD-CKD			Preval	ent DD-CKD			
SafetyAny serious adverse event49.7%56.5%55.0%58.3%Any drug-related adverse events3.9%2.7%9.6%3.8%Any serious drug-related adverse events0.6%2.2%1.6%1.5%Vascular access thrombosis3.4%5.4%6.0%4.4%• Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumorConclusions and EvaluationAuthor'sOral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis.Strengths • Randomized controlled trial • Diverse populations; specified Hispanic ethnicity• Open-label• Open-label• Majority of patients were on prevalent DD-CKD • Included hemoglobin baseline and targets for United States • Reported both efficacy (Hgb) and safety (MACE)• Nadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased indeficacy analysisFDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent of anemia of C		Event	Event		dustat 179)	Darbepoeitin alfa (N=186)	Vadadusta (N=1768)	t Darbepoeitin alfa (N=1769)		
Any drug-related adverse events3.9%2.7%9.6%3.8%Any serious drug-related adverse events0.6%2.2%1.6%1.5%Vascular access thrombosis3.4%5.4%6.0%4.4%• Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumorConclusions and EvaluationAuthor'sOral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis.Author'sOral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis.StrengthsLimitations• Randomized controlled trial • Diverse populations; specified Hispanic ethnicity• Open-label• Majority of patients were on prevalent DD-CKD• Open-label• Included hemoglobin baseline and targets for United States• Condued baseline iron use, but not changes thereafter• Reported both efficacy (Hgb) and safety (MACE)• Long-term studies still needed for further safety and efficacy analysisFDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0 ₂ TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis.	Safety	Any serious adverse eve	ent	49.7% 56.5%		56.5%	55.0%	58.3%		
Any serious drug-related adverse events 0.6% 2.2% 1.6% 1.5% Vascular access thrombosis 3.4% 5.4% 6.0% 4.4% • Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumor Conclusions and Evaluation Author's Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Limitations Strengths • Randomized controlled trial • Open-label • Open-label • Majority of patients were on prevalent DD-CKD • Najority of patients were on prevalent DD-CKD • Vadadustat had standardized initial dose wherea darbepoetin alfa was titrated base on patient's prior doses or dosing protocol • Included hemoglobin baseline and targets for United States • Included baseline iron use, but not changes thereafter • Long-term studies still needed for further safety and efficacy analysis • Otadaustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis) Yadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0_ZFECT trials in patients not on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As wascular access thrombosis further analysis will be needed to patients on di		Any drug-related adverse events		3.	9%	2.7%	9.6%	3.8%		
Vascular access thrombosis 3.4% 5.4% 6.0% 4.4% • Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumor Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths Limitations • Randomized controlled trial • Open-label • Diverse populations; specified Hispanic ethnicity • Majority of patients were on prevalent DD-CKD • Included hemoglobin baseline and targets for United States • Included hemoglobin baseline and targets (MACE) • Reasoning • Reported both efficacy (Hgb) and safety (MACE) • Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in dialysis) • Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0 ₂ TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As		Any serious drug-related adverse events		s 0.	6%	2.2%	1.6%	1.5%		
 Common adverse events with vadadustat in prevalent DD-CKD (≥10%): HTN, diarrhea, pneumor Conclusions and Evaluation Author's Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths Randomized controlled trial Diverse populations; specified Hispanic ethnicity Majority of patients were on prevalent DD-CKD Included hemoglobin baseline and targets for United States Reported both efficacy (Hgb) and safety (MACE) FDA Reasoning FDA Reasoning Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0zTECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis, as the sa		Vascular access thromb	osis	3.	4%	5.4%	6.0%	4.4%		
Conclusions and Evaluation Author's Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths Limitations • Randomized controlled trial • Open-label • Diverse populations; specified Hispanic ethnicity • Vadadustat had standardized initial dose wherea darbepoetin alfa was titrated base on patient's prior doses or dosing protocol • Majority of patients were on prevalent DD-CKD • Najority of patients were on prevalent DD-CKD • Included hemoglobin baseline and targets for United States • Included baseline iron use, but not changes thereafter • Reported both efficacy (Hgb) and safety (MACE) • Long-term studies still needed for further safety and efficacy analysis FDA Reasoning Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRo ₂ TECT trials in patients on dialysis; As was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As		Common adverse eve	nts with vadadu	stat in pr	evalent	DD-CKD (≥10%	5): HTN, diarı	hea, pneumonia		
Author's Conclusions Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are undergoing dialysis. Strengths Limitations • Randomized controlled trial • Open-label • Diverse populations; specified Hispanic ethnicity • Vadadustat had standardized initial dose wherea darbepoetin alfa was titrated base on patient's prior doses or dosing protocol • Majority of patients were on prevalent DD-CKD • Najority of patients were on prevalent DD-CKD • Included hemoglobin baseline and targets for United States • Included baseline iron use, but not changes thereafter • Reported both efficacy (Hgb) and safety (MACE) • Long-term studies still needed for further safety and efficacy analysis FDA Reasoning Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE or DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0_ITECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular acress thrombosi. further analysis will be needed to asses if a 1.6% increased incidence wascular acress thrombosi.			Conclusions	and Eva	luation					
Conclusionsundergoing dialysis.StrengthsRandomized controlled trialDiverse populations; specified Hispanic ethnicityDiverse populations; specified Hispanic ethnicityMajority of patients were on prevalent DD-CKDDiverse populations are considered for data was titrated base on patient's prior doses or dosing protocolIncluded hemoglobin baseline and targets for United StatesIncluded hemoglobin baseline and targets for United StatesReported both efficacy (Hgb) and safety (MACE)Included baseline iron use, but not changes thereafterFDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in datustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As yascular access thrombosis in under	Author's	Oral vadadustat is noninferior compared to darbepoetin alfa in patients with CKD who are				ho are				
StrengthsLimitations• Randomized controlled trial• Open-label• Diverse populations; specified Hispanic ethnicity• Vadadustat had standardized initial dose wherea darbepoetin alfa was titrated base on patient's prior doses or dosing protocol• Majority of patients were on prevalent DD-CKD• Included hemoglobin baseline and targets for United States• Included hemoglobin baseline and targets for United States• Included hemoglobin baseline and targets for United States• Reported both efficacy (Hgb) and safety (MACE)• Long-term studies still needed for further safety and efficacy analysisFDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis)Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PR0 ₂ TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis further analysis will be paeded to assess if a 1.6% increased incidence	Conclusions	undergoing dialysis.								
Critiqueethnicitydarbepoetin alfa was titrated base on patient's prior doses or dosing protocolCritiqueMajority of patients were on prevalent DD-CKDRescue therapy with ESA could skew resultsIncluded hemoglobin baseline and targets for United StatesIncluded baseline iron use, but not changes thereafterReported both efficacy (Hgb) and safety (MACE)Long-term studies still needed for further safety and efficacy analysisFDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis)Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As yascular access thrombosis further analysis will be needed to assess if a 1.6% increased incidence		 Strengths Randomized controlled trial Diverse populations: specified Hispanic 			 Open-label Vadadustat had standardized initial dose whereas 					
 Critique Majority of patients were on prevalent DD-CKD Included hemoglobin baseline and targets for United States Reported both efficacy (Hgb) and safety (MACE) FDA Reasoning Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO₂TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis further analysis will be needed to assess if a 1.6% increased incident 		ethnicity			darbepoetin alfa was titrated base on patient's					
 Included hemoglobin baseline and targets for United States Reported both efficacy (Hgb) and safety (MACE) Included baseline iron use, but not changes thereafter Long-term studies still needed for further safety and efficacy analysis Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO₂TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis further analysis will be needed to assess if a 1.6% increased incident. 	Critique	 Majority of patients were on prevalent 			prior doses or dosing protocol					
 Included hemoglobin baseline and targets for United States Reported both efficacy (Hgb) and safety (MACE) Included baseline iron use, but not changes thereafter Long-term studies still needed for further safety and efficacy analysis Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO₂TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis further analysis will be needed to assess if a 1.6% increased incident 	Chilque	DD-CKD		•	Rescue therapy with ESA could skew results					
 Reported both efficacy (Hgb) and safety (MACE) Long-term studies still needed for further safety and efficacy analysis Vadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased in of thromboembolic events (vascular access thrombosis in dialysis) Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO₂TECT trials in patients not on dialysis; as the saway summary 		 Included nemoglobin for United States 	baseline and tar	gets	ts • Included baseline iron use, but not changes					
FDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis)Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As yascular access thrombosis, further analysis will be needed to assess if a 1.6% increased incident		Reported both efficact	ty I	 Long-term studies still needed for further safety 						
FDA ReasoningVadadustat associated with increased risk of MACE and drug-induced liver injury (DILI). Increased of thromboembolic events (vascular access thrombosis in dialysis)Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As yascular access thrombosis, further analysis will be needed to assess if a 1.6% increased incident		Reported both efficacy (Hgb) and safety (MACE)				and efficacy analysis				
Reasoningof thromboembolic events (vascular access thrombosis in dialysis)Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis further analysis will be needed to assess if a 1.6% increased incident	FDA	Vadadustat associated w	vith increased ris	k of MA	CE and d	rug-induced liv	ver injury (Dl	LI). Increased risk		
Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; events posed by the FDA were reported in the PRO2TECT trials in patients not on dialysis; as the sa was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As vascular access thrombosis, further analysis will be needed to assess if a 1.6% increased incident	Reasoning	of thromboembolic ever	its (vascular acco	ess thron	nbosis in	dialysis)				
constitutes a greater risk vs benefit.	Takeaway Summary	Vadadustat is a reasonable alternative to darbepoetin alfa for the treatment of anemia of CKD in HD patients. No increased incidence of MACE nor DILI were noted in prevalent DD-CKD patients; the events posed by the FDA were reported in the PRO ₂ TECT trials in patients not on dialysis; as the same was not seen in dialysis patients, vadadustat should still be considered for patients on dialysis. As for vascular access thrombosis, further analysis will be needed to assess if a 1.6% increased incidence								

Table #12: Daprodustat for the Treatment of Anemia in Patients Undergoing Dialysis (ASCEND-D)					
Objective	To determine the efficacy and safety of daprodustat compared to ESAs				
	Metho	ds			
Study design	 Multicenter, multinational, open-label, phase 3 randomized controlled trial conducted from 11/23/16 – 8/10/2018 431 centers in 35 countries Stratified by type of dialysis, geographic region, and participation in ambulatory substudy monitoring blood pressure 				
Population	 Inclusion Criteria Chronic kidney disease Dialysis ≥ 90 days Received ESA for ≥6 weeks Hgb 8.0-12.0 g/dL → 8.0-11.5 g/dL after 4-week run-in period Ferritin ≥100 ng/mL and TSAT >20% 	 Exclusion Criteria Anemia unrelated to CKD, a recent cardiovascular event, or current/recent cancer (within 2 years) Kidney transplant Active GI bleeding, or clinically significant GI bleed ≤4 weeks before screening ACS, CVA, TIA ≤4 weeks before screening New York Heart Association (NYHA) Class IV Heart failure Uncontrolled hypertension 			
Intervention	 I:1 ratio of daprodustat or injectable ESA Daprodustat: 4-12 mg daily (according to ESA dose); stepped changes from 1-24 mg Injectable ESA according to previous ESA dose IV epoetin alfa for patients on HD SubQ darbepoetin alfa for patients on PD 				
Outcomes	 Primary (non-inferiority) Mean change in hemoglobin level from baseline to the average during the primary evaluation period (week 28-52) First occurrence of an adjudicated major adverse cardiovascular event (MACE): a composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke Secondary (superiority) Average monthly dose of intravenous iron administered from baseline to week 52 First occurrence of a MACE First occurrence of a MACE or thromboembolic event First occurrence of a MACE or hospitalization for heart failure 				
Statistical Analysis	 Enroll 3000 patients for 945 adjudicated first MACEs for a noninferiority margin of 1.20 COVID-19 adjustment: noninferiority margin changed to 1.25 90% power maintained despite revised trial size of 664 target number of events Change in hemoglobin noninferiority margin set at -0.75 g/dL Intention-to-treat One-sided α 0.025 Secondary superiority analysis performed if noninferiority established for the two primary outcomes Holm-Bonferroni method to adjust for multiplicity 				

Results							
	Characteristic (N=2964)		Dapro	odustat (N=14	87)	ESA (N=1477)	
	Median age (IQR), yr		58 (48	8-67)		59 (47-68)	
	Male, no. (%)		851 (57.2)		847 (57.3)		
	Race, no. (%)						
	White		995 (66.9)			982 (66.5)	
	Black*		228 (15.3)		233 (15.8)		
	Asian		176 (11.8)		181 (12.3)		
	Hemodialysis, no. (%)		1316 (88.5)		1308 (88.6)		
	Coexisting Condition						
	Coronary artery disease		347 (23.3)			344 (22.6)	
	Heart failure		267 (18.0)		254 (17.2)		
	Myocardial infarction		122 (8	8.2)		135 (9.1)	
Baseline	Stroke		96 (6.	.5)		110 (7.4)	
characteristics	Hypertension		1366	(91.9)		1373 (93.0)	
	Thromboembolic event		273 (2	18.4)		242 (16.4)	
	Diabetes		615 (4	41.4)		617 (41.8)	
	Labs						
	Median hemoglobin (IQR), g/dL		10.4 (9.7-11.1)		10.5 (9.8-11.1)	
	Median total iron (IQR), μmol/L		13 (10	0-16)		13 (10-16)	
	Median LDL (IQR), mg/dL		81.9 (61.0-103.1)		81.1 (61.0-103	.9)
	Intravenous Iron						
	Patients receiving therapy (%)		64.3			63.8	
	Median Dose (IQR), mg/month	onth)0 (0-217.4)		97.1 (0-217.4)	
	ESA Hyporesponsiveness, no. (%)		183 (12.3)			180 (12.2)	
	*Post-hoc analysis showed 39.0% of patients in United States were Black						
	Primary Outcome	Daprod	ustat	ESA	Trea	tment Effect	
	Mana Infantantes						D Value
	Non-Interiority	(N=14	87)	(N=1477)		(95% CI)	P-Value
	Change in hemoglobin level from	(N=14	.87)	(N=1477)	Me	(95% CI) ean adjusted	P-Value
	Change in hemoglobin level from baseline to week 28-52, g/dL	(N=14 0.28±0	.02	(N=1477) 0.10±0.02	Me diff	(95% CI) ean adjusted erence, 0.18	P-Value
	Change in hemoglobin level from baseline to week 28-52, g/dL	(N=14 0.28±0	.02	(N=1477) 0.10±0.02	Me diff ((95% CI) an adjusted erence, 0.18 0.12-0.24)	P-Value
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%)	(N=14 0.28±0 374 (2	87) 0.02 5.2)	(N=1477) 0.10±0.02 394 (26.7)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07)	P-Value <0.001 <0.001
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause	(N=14 0.28±0 374 (2 244 (1	87) 0.02 5.2) 6.4)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) 	P-Value <0.001 <0.001
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI	(N=14 0.28±0 374 (2 244 (1 101 (6	.87) 0.02 5.2) 6.4) 5.8)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) 	P-Value <0.001 <0.001
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2	.87) 0.02 5.2) 6.4) 5.8) .0)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) 	P-Value <0.001 <0.001
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2	87) 0.02 5.2) 6.4) 5.8) .0)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) 	P-Value <0.001 <0.001
	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%)	(N=14 0.28±0 374 (2 244 (1) 101 (6 29 (2 Daproc	87) 0.02 5.2) 6.4) 5.8) .0)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14	87) 0.02 5.2) 6.4) 0.8) .0) lustat 487) 25.2)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 204 (26.7)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproo (N=14 374 (2 374 (2	87) 0.02 5.2) 6.4) 5.8) 0) lustat 487) 25.2) 22.2)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) E42 (26.8)	Me diff (HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3	87) 0.02 5.2) 6.4) 5.8) 0.0) dustat 487) 25.2) 33.4)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8)	Me diff (HR, 0 Trea HR, 0	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2	87) 0.02 5.2) 6.4) 0.0 0.0 10 10 10 10 10 10 10 10 10 1	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3)	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or thospitalization for heart failure Death from any cause	(N=14 0.28±0 374 (2 244 (1) 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1)	87) 0.02 5.2) 6.4) 5.8) 0) dustat 487) 25.2) 33.4) 28.6) 16.4)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8)	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1	87) 0.02 5.2) 6.4) 5.8) .0) dustat 487) 25.2) 33.4) 28.6) 16.4)	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8)	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16)	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg.	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1 90.8†	87) 0.02 5.2) 6.4) 5.8) 0.0) 487) 25.2) 33.4) 28.6) 16.4) +3.3	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference,	P-Value <0.001 <0.001 P-Value
Outcomes	Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg, Mean (SD)	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1 90.8±	87) 0.02 5.2) 6.4) 5.8) 0.0) lustat 487) 25.2) 33.4) 28.6) 16.4) ±3.3	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference, (-18.4 to 0.2)	P-Value <0.001 <0.001 P-Value
Outcomes	Non-Interfority Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg, Mean (SD) • Daprodustat decreased hepcidin	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1 90.8±	87) 0.02 5.2) 6.4) 5.8) .0) dustat 487) 25.2) 33.4) 28.6) 16.4) ±3.3 d incre	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3 ased TIBC more	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference, (-18.4 to 0.2) oared to ESAs	P-Value <0.001 <0.001 P-Value
Outcomes	Non-Interfority Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg, Mean (SD) • Daprodustat decreased hepcidin • Patients hyporesponsive to ESAs	(N=14 0.28±0 374 (2 244 (1) 101 (6 29 (2) Daproc (N=14 374 (2 497 (3 425 (2 244 (1) 90.8± evels and required	87) 0.02 5.2) 6.4) 5.8) 0.0 487) 25.2) 33.4) 28.6) 16.4) ±3.3 d incre less IV	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3 ased TIBC mor iron in the da	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference, (-18.4 to 0.2) pared to ESAs tat arm compare	P-Value <0.001 P-Value ed ESAs, and
Outcomes	Non-Interfority Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg, Mean (SD) • Daprodustat decreased hepcidin I • Patients hyporesponsive to ESAs more often maintained target Hg	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1 90.8± evels and required b levels of	87) 0.02 5.2) 6.4) 5.8) .0) dustat 487) 25.2) 33.4) 25.2) 33.4) 28.6) 16.4) 28.6) 16.4) 16.4) 16.4) 16.4) 10.02 10.	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3 ased TIBC mor iron in the da rodustat	Me diff (HR, 0 	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference, (-18.4 to 0.2) bared to ESAs tat arm compared	P-Value <0.001 <0.001 P-Value
Outcomes	Non-Interfority Change in hemoglobin level from baseline to week 28-52, g/dL MACE, No. (%) Death from any cause Nonfatal MI Nonfatal CVA Secondary Outcome, No. (%) Superiority MACE MACE or thromboembolic event MACE or hospitalization for heart failure Death from any cause Adjusted monthly IV iron dose from baseline to week 52, mg, Mean (SD) • Daprodustat decreased hepcidin I • Patients hyporesponsive to ESAs more often maintained target Hg • Rapid rise in Hgb (>2 g/dL in 4-we	(N=14 0.28±0 374 (2 244 (1 101 (6 29 (2 Daproc (N=14 374 (2 497 (3 425 (2 244 (1 90.8± evels and required b levels of ek period	87) 0.02 5.2) 6.4) 5.8) 0.0) 487) 25.2) 33.4) 28.6) 16.4) 28.6) 16.4) 16.4) 16.4) 16.4) 10.02 10.	(N=1477) 0.10±0.02 394 (26.7) 233 (15.8) 126 (8.5) 35 (2.4) ESA (N=1477) 394 (26.7) 543 (36.8) 433 (29.3) 233 (15.8) 99.9±3.3 ased TIBC mor iron in the da odustat similar between	Me diff (HR, 0 HR, 0 HR	(95% CI) ean adjusted erence, 0.18 0.12-0.24) .93 (0.81-1.07) atment Effect (95% CI) 0.93 (0.81-1.07) 0.88 (0.78-1.00) 0.97 (0.85-1.11) 0.96 (0.82-1.16) an difference, (-18.4 to 0.2) bared to ESAs tat arm compare rodustat and ESA	P-Value <0.001 <0.001 P-Value

Page **18** of **26**

	Adverse Effect, No. (%)	Daprodustat (N=1482)	ESA (N=1474)			
	All TEAEs	1307 (88.2)	1252 (84.9)			
	Hypertension	243 (16)	1252 (85)			
	Dialysis hypotension	141 (10)	110 (7)			
	Hyperkalemia	91 (6)	89 (6)			
Safety	Esophageal or gastric erosions	60 (4)	81 (5.5)			
	Arteriovenous fistula thrombosis	85 (6)	98 (7)			
	All Serious TEAEs	773 (52.2)	748 (50.7)			
	Pneumonia	86 (6)	81 (5)			
	Arteriovenous fistula thrombosis	36 (2)	57 (4)			
	Conclusions and	Evaluation				
Author's	Daprodustat is an effective treatment for and	emia of CKD for patients und	lergoing hemodialysis or			
Conclusions	peritoneal dialysis.	•	0 0 ,			
Critique	 Strengths Randomized controlled trial Representation of Black Americans Evaluated rise in hemoglobin along with overall change Daprodustat was titrated based on previous doses of ESA therapy Evaluated patients with ESA hyporesponsiveness Reported both efficacy (change in Hgb, iron use) and safety (MACE, VTE) Provided additional on-treatment analysis 	Limitations • Open-label • Did not specify ethnicities • Did not use darbepoetin in HD patients, nor epoetin in PD patients • Initiation Hgb criteria not fully applicable to USA patients (i.e., upper limit of Hgb 12 g/dL) gb,				
FDA Reasoning	To Be Determined by February 1 st , 2023					
Takeaway Summary	Daprodustat is a reasonable alternative to ESAs in patients with anemia of CKD on HD. The incidence of MACE was comparable to that of ESAs and numerically did not confer additional risk (HR 0.93). Previous concerns for gastric events and increased thrombosis risk were not seen in this trial. Patients who were hyporesponsive to ESAs further saw a decreased need for IV iron while on daprodustat, adding an additional benefit to using this HIE-PHI.					

Summary

- Final Statements
 - o Current guideline recommendations for the treatment of anemia of CKD include iron, ESAs, and RBCs
 - Consensus is that iron be utilized first, then consider ESAs after a risk/benefit analysis
 - Depending on the guideline, initial hemoglobin values to administer agents slightly differ
 - Goal is to avoid RBC transfusion due to myriad of consequences
 - Oral HIF-PHIs endogenously increase EPO
 - Shown to increase hemoglobin levels in patients with anemia of CKD comparable to that of ESAs
 - Side effect profiles vary slightly between agents, but are overall tolerable
- My recommendation
 - o Daprodustat shows the most evidence for use compared to ESAs, and should be approved by the FDA
 - Studies included change in hemoglobin, MACE events, and safety parameters
 - Included parameters previously not seen in studies conducted on roxadustat and vadadustat
 - Rate of rise in hemoglobin
 - Initial daprodustat dose based on prior ESA dose
 - Effects on ESA hyporesponsive patients
 - Roxadustat and vadadustat are also reasonable alternatives compared to ESAs, however further data will be needed to gain the FDA's approval
 - Safety data for roxadustat (targeting hemoglobin level of 10.0-11.0 g/dL rather than 10.5-12 g/dL)
 - Application for vadadustat specifically in DD-CKD patients (exclude non-dialysis patients)
- Benefits

Additional agents for use in anemia of CKD

- Oral agent; reduces amount of venipuncture
- In the long-term, would be cheaper to manufacture compared to recombinant EPO
- Limitations

• Questions remaining^{22,39}

2

3

- Are there long-term benefits towards iron absorption and metabolism?
 - Longest study of 4 years found no difference compared to ESAs
 - Hepcidin levels and other inflammatory markers decreased (e.g., C-reactive protein), but iron utilization was not different between HIF-PHIs and ESAs except in cases of ESA hyporesponsiveness
- What other pleotropic effects can be seen with HIF-PHIs?²²
 - Current literature shows conflicting evidence for benefits vs detriments
 - Need more studies to specifically focus on cholesterol effects to gather conclusions on potential LDL-reducing effects
 - HIF-2α has data indicating its pathophysiologic association with gastroesophageal reflux disease (GERD); HIF-PHIs may not be appropriate for patients with similar conditions³⁹

Treatment Algorithm

Resources for Pharmacists

- Parfrey P. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors for Anemia in CKD. *N Engl J Med*. 2021;385(25):2390-2391. doi:10.1056/NEJMe2117100
- Haase VH. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. *Kidney Int Suppl (2011)*. 2021;11(1):8-25. doi:10.1016/j.kisu.2020.12.002
- Gupta N, Wish JB. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients With CKD [published correction appears in Am J Kidney Dis. 2017 Jun;69(6):869]. Am J Kidney Dis. 2017;69(6):815-826. doi:10.1053/j.ajkd.2016.12.011

References

- 1. Malkina A. Chronic kidney disease genitourinary disorders. Merck Manuals Professional Edition. https://www.merckmanuals.com/professional/genitourinary-disorders/chronic-kidney-disease/chronic-kidney-disease. Published October 20, 2022. Accessed October 25, 2022.
- 2. How to classify CKD. National Kidney Foundation. https://www.kidney.org/professionals/explore-your-knowledge/how-to-classify-ckd. Published October 4, 2018. Accessed October 25, 2022.
- Bindroo S, Quintanilla Rodriguez BS. Renal failure. StatPearls. https://www.statpearls.com/ArticleLibrary/viewarticle/28355. Published August 8, 2022.
- 4. U.S. Renal Data System, USRDS 2016 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2016.
- 5. Race/ethnicity kidney disease risk factors. American Kidney Fund. https://www.kidneyfund.org/all-about-kidneys/risk-factors/raceethnicity-kidney-disease-risk-factors#race-ethnicity-kidney-disease-risk-factors. Published March 28, 2022. Accessed October 25, 2022.
- 6. Carney EF. The impact of chronic kidney disease on global health. *Nat Rev Nephrol*. 2020;16(5):251. doi:10.1038/s41581-020-0268-7
- 7. Shaikh H, Aeddula NR. Anemia Of Chronic Renal Disease. [Updated 2022 Jun 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK539871/</u>
- 8. Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. *Acta Haematol*. 2019;142(1):44-50. doi:10.1159/000496492
- 9. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631-1634. doi:10.1681/ASN.2011111078
- 10. Locatelli F, Del Vecchio L, Pozzoni P. Anemia and cardiovascular risk: the lesson of the CREATE Trial. *J Am Soc Nephrol*. 2006;17(12 Suppl 3):S262-S266. doi:10.1681/ASN.2006080924
- 11. Lamerato L, James G, van Haalen H, et al. Epidemiology and outcomes in patients with anemia of CKD not on dialysis from a large US healthcare system database: a retrospective observational study. *BMC Nephrol*. 2022;23(1):166. Published 2022 Apr 30. doi:10.1186/s12882-022-02778-8
- 12. Kliger AS, Foley RN, Goldfarb DS, et al. KDOQI US commentary on the 2012 KDIGO Clinical Practice Guideline for Anemia in CKD. *Am J Kidney Dis.* 2013;62(5):849-859. doi:10.1053/j.ajkd.2013.06.008
- 13. Yamamoto H, Nishi S, Tomo T, et al. 2015 Japanese society for dialysis therapy: Guidelines for renal anemia in chronic kidney disease. *Renal Replacement Therapy*. 2017;3(1). doi:10.1186/s41100-017-0114-y
- 14. *Chronic kidney disease: assessment and management*. London: National Institute for Health and Care Excellence (NICE); November 24, 2021.
- 15. Sarode R. Complications of Transfusion Hematology and Oncology. https://www.merckmanuals.com/professional/hematology-and-oncology/transfusion-medicine/technique-oftransfusion. Published October 20, 2022.
- 16. Schoener B, Borger J. Erythropoietin Stimulating Agents. [Updated 2022 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK536997/</u>
- 17. Epoetin alfa. Lexi-Drugs. Hudson, OH: Lexicomp, 2022. <u>http://online.lexi.com/</u>. Last updated 10/13/2022
- 18. Darbepoetin alfa. Lexi-Drugs. Hudson, OH: Lexicomp, 2022. http://online.lexi.com/. Last updated 10/15/22

- 19. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoetin alfa in chronic kidney disease. *N Engl J Med*. 2006;355(20):2085-2098. doi:10.1056/NEJMoa065485
- 20. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. *N Engl J Med*. 2009;361(21):2019-2032. doi:10.1056/NEJMoa0907845
- 21. Drüeke, T.B. Lessons from clinical trials with erythropoiesis-stimulating agents (ESAs). *Ren Replace Ther.* 2018;4(46). https://doi.org/10.1186/s41100-018-0187-2
- 22. Kaplan JM, Sharma N, Dikdan S. Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney Disease. *Int J Mol Sci.* 2018;19(2):389. Published 2018 Jan 29. doi:10.3390/ijms19020389
- 23. Sugahara M, Tanaka T, Nangaku M. Prolyl hydroxylase domain inhibitors as a novel therapeutic approach against anemia in chronic kidney disease. *Kidney Int.* 2017;92(2):306-312. doi:10.1016/j.kint.2017.02.035
- 24. Ikeda Y. Novel roles of HIF-PHIs in chronic kidney disease: the link between iron metabolism, kidney function, and FGF23. *Kidney Int*. 2021;100(1):14-16. doi:10.1016/j.kint.2021.04.030
- 25. Mylonis I, Simos G, Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. *Cells*. 2019;8(3):214. Published 2019 Mar 3. doi:10.3390/cells8030214
- 26. Haase VH. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. *Kidney Int Suppl* (2011). 2021;11(1):8-25. doi:10.1016/j.kisu.2020.12.002
- 27. Bergman KL. Fibrogen announces approval of Roxadustat in China for the treatment of anemia in chronic kidney disease patients on dialysis. Investors and Media. https://investor.fibrogen.com/news-releases/news-release-details/fibrogen-announces-approval-roxadustat-china-treatment-anemia. Accessed October 25, 2022.
- 28. GSK receives first regulatory approval for Duvroq (daprodustat) in Japan for patients with anaemia due to chronic kidney disease. GSK. https://www.gsk.com/en-gb/media/press-releases/gsk-receives-first-regulatory-approval-for-duvroq-daprodustat-in-japan-for-patients-with-anaemia-due-to-chronic-kidney-disease/. Published June 29, 2020. Accessed October 25, 2022.
- 29. Otten A, Tung M. Astellas receives European Commission approval for first-in-class EVRENZO[™] (roxadustat) for adult patients with symptomatic anemia of chronic kidney disease. GlobeNewswire News Room. https://www.globenewswire.com/news-release/2021/08/19/2283933/33525/en/Astellas-Receives-European-Commission-Approval-for-First-in-Class-EVRENZO-roxadustat-for-Adult-Patients-with-Symptomatic-Anemia-of-Chronic-Kidney-Disease.html. Published August 19, 2021. Accessed October 25, 2022.
- 30. Sheppard KK. Akebia Therapeutics announces approval of Vadadustat in Japan for the treatment of anemia due to chronic kidney disease in dialysis-dependent and non-dialysis dependent adult patients. Press Release. https://ir.akebia.com/news-releases/news-release-details/akebia-therapeutics-announces-approval-vadadustatjapan. Published June 29, 2020. Accessed October 25, 2022.
- 31. Bergman KL. Roxadustat approved in Japan for the treatment of anemia associated with chronic kidney disease in dialysis patients. Press Release. https://investor.fibrogen.com/news-releases/news-release-details/roxadustat-approved-japan-treatment-anemia-associated-chronic. Published September 20, 2019. Accessed October 25, 2022.
- 32. FDA committee votes against approval of roxadustat for anemia of chronic kidney disease. ASH Clinical News. https://ashpublications.org/ashclinicalnews/news/5747/FDA-Committee-Votes-Against-Approval-of-Roxadustat. Published September 2021. Accessed October 25, 2022.
- 33. Park B. FDA says no to VADADUSTAT approval due to safety concerns. MPR. https://www.empr.com/home/news/drugs-in-the-pipeline/fda-says-no-to-vadadustat-approval-due-to-safetyconcerns/. Published April 1, 2022. Accessed October 25, 2022.
- 34. GSK announces update on US FDA Regulatory Review of daprodustat in anaemia of chronic kidney disease. Press Releases. https://www.gsk.com/en-gb/media/press-releases/gsk-announces-update-on-us-fda-regulatory-review-of-daprodustat-in-anaemia-of-chronic-kidney-disease/. Published September 6, 2022. Accessed October 25, 2022.
- 35. European Medicines Agency (EMA) accepts marketing authorisation application for daprodustat. Press Releases. https://www.gsk.com/en-gb/media/press-releases/european-medicines-agency-ema-accepts-marketingauthorisation-application-for-daprodustat/. Published March 1, 2022. Accessed October 25, 2022.
- 36. Abdelazeem B, Shehata J, Abbas KS, et al. The efficacy and safety of roxadustat for the treatment of anemia in nondialysis dependent chronic kidney disease patients: An updated systematic review and meta-analysis of randomized clinical trials. *PLoS One*. 2022;17(4):e0266243. Published 2022 Apr 1. doi:10.1371/journal.pone.0266243

- 37. Eckardt KU, Agarwal R, Aswad A, et al. Safety and Efficacy of Vadadustat for Anemia in Patients Undergoing Dialysis. *N Engl J Med*. 2021;384(17):1601-1612. doi:10.1056/NEJMoa2025956
- 38. Singh AK, Carroll K, Perkovic V, et al. Daprodustat for the Treatment of Anemia in Patients Undergoing Dialysis. *N Engl J Med*. 2021;385(25):2325-2335. doi:10.1056/NEJMoa2113379
- 39. Souza RF, Bayeh L, Spechler SJ, Tambar UK, Bruick RK. A new paradigm for GERD pathogenesis. Not acid injury, but cytokine-mediated inflammation driven by HIF-2α: a potential role for targeting HIF-2α to prevent and treat reflux esophagitis. *Curr Opin Pharmacol*. 2017;37:93-99. doi:10.1016/j.coph.2017.10.004
- 40. Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures. 6th ed. Philadelphia, PA: Elsevier; 2013:691-692
- 41. Qu A, Taylor M, Xue X, et al. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. *Hepatology*. 2011;54(2):472-483. doi:10.1002/hep.24400
- 42. Haase VH. Pathophysiological Consequences of HIF Activation: HIF as a modulator of fibrosis. *Ann N Y Acad Sci.* 2009;1177:57-65. doi:10.1111/j.1749-6632.2009.05030.x

Appendix

General Pathophysiology of Chronic Kidney Disease¹⁻³

Complications of Chronic Kidney Disease^{1,3}

Mechanism Sign/Symptom/Lab Finding Published Jan 4, 2022 on www.thecalgaryguide.com Legend: Pathophysiology Complications

(CKD-MBD)

hyperparathyroidism

080

https://calgaryguide.ucalgary.ca/

Iron Parameters⁴⁰

Devementer	Measure and	Normal Range		
Parameter	Clinical Significance	Men	Women	
Serum Iron	 Measure of circulating iron that is bound to transferrin and ferritin Necessary to make hemoglobin for RBCs 	70-175 mcg/dL	50-170 mcg/dL	
Transferrin Transferrin Saturation (TSAT)	 Delivers iron to various tissues in the body Percent of iron bound to transferrin 	20-50%		
- Measure of iron stores in body - Blood protein that contains iron and is stored in liver, spleen, skeletal muscles, and bone marrow (small amount in blood)		24-336 mcg/L	11-307 mcg/L	
Total (or Transferrin) Iron Binding Capacity (TIBC)	 Measure of the capacity of transferrin to bind iron High TIBC means low levels of iron 	250-450	mcg/dL	

Potential Pleotropic Effects of HIF-PHIs^{22,39,41-42}

Beneficial	Detrimental
 Ischemic disease mitigation 	Chronic renal fibrosis
Quells inflammation	 Exacerbated inflammation
 Tissue injury/infection healing 	 Hepatic fibrosis
Lipid reduction	 Lipid production
Mucosal protection	 Gastroesophageal reflux disease