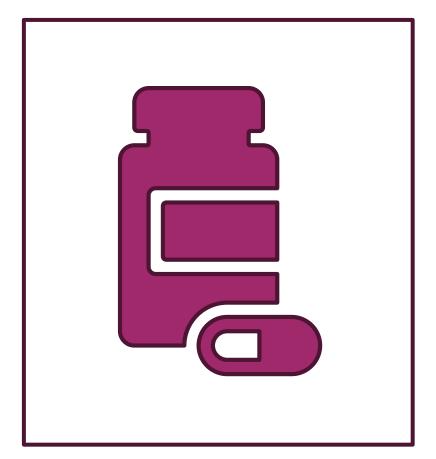

WHAT THE NOSE KNOWS: MRSA NARES AS A TOOL FOR ANTIMICROBIAL PRESCRIBING IN DIABETIC FOOT INFECTIONS

SARA STASHLUK, PHARMD UIW PGYI PHARMACOTHERAPY RESIDENT

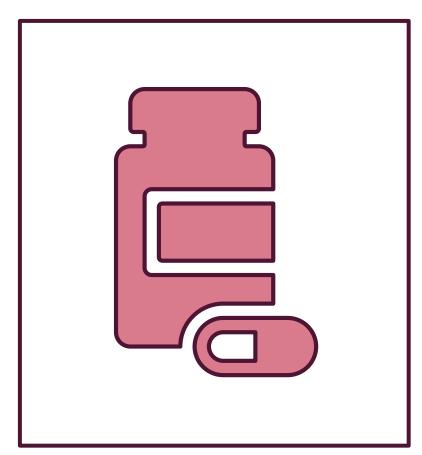
FINANCIAL DISCLOSURES

THE SPEAKER HAS NO FINANCIAL CONFLICTS OF INTEREST TO DISCLOSE


ABBREVIATIONS

DFI: Diabetic Foot Infection

NPV: Negative Predictive Value

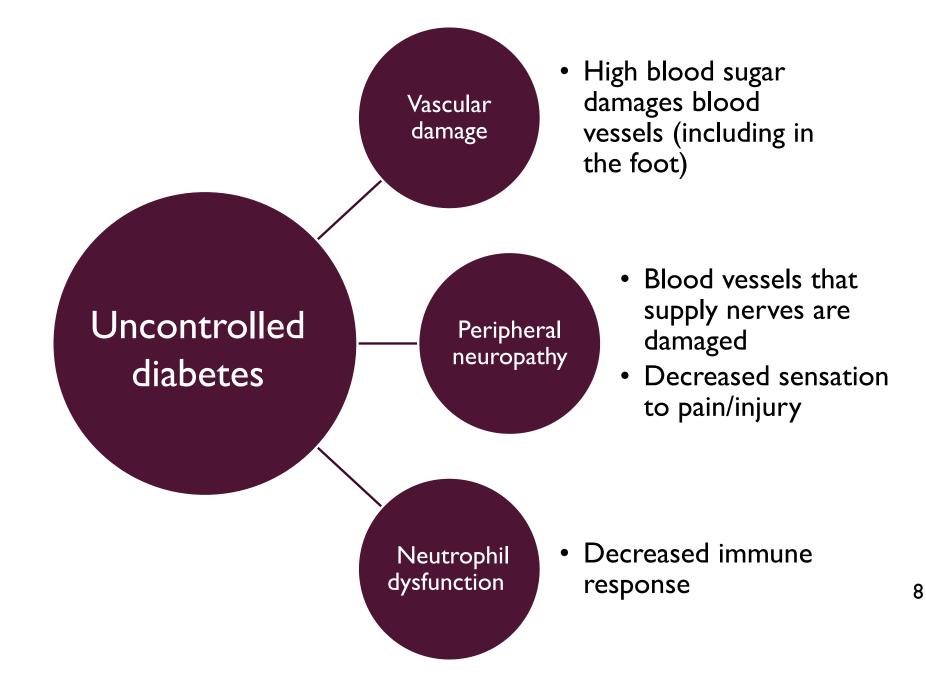

PPV: Positive Predictive Value

PHARMACIST LEARNING OBJECTIVES

- Identify the impact of MRSA in diabetic foot infections
- Analyze current literature for using MRSA nares to optimize antimicrobial therapy in diabetic foot infections
- Recommend empiric treatment regimens regarding MRSA in diabetic foot infections

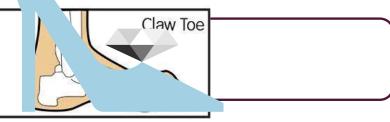
TECHNICIAN LEARNING OBJECTIVES

- Explain the role of the MRSA nasal screening test
- Analyze the use of MRSA nasal screening in respiratory infections
- Summarize recent literature on use for MRSA nares for diabetic foot infections


DIABETIC FOOT INFECTIONS

EPIDEMIOLOGY

- In 2021, 573 million adults aged 20-79 years were living with diabetes
- Frequently results in hospitalization and amputation
- 85% of amputations in diabetics are attributable to ulceration on the foot
 - Chronic infection and gangrene
- Average cost breakdown
 - o Ulcer: \$3,368
 - Minor amputation: \$10,486
 - Major amputation: \$30,131



Clinical Infectious Diseases, 2023; ciad527, Am Fam Physician. 2008;78(1):71-79. Diabetes Metab Res Rev. 2020 Mar:36 Suppl 1:e3250

PROGRESSION OF INFECTION

- Impaired awareness of trauma
 - Claw toe increases risk of trauma

- Tissue exposure to pathogens (superficial infection)
- Progression to deeper infection (tendon, muscle, joint, bone)
 - Impaired host defenses
- Inflammatory response increases pressure
 - Tissue necrosis

PATHOPHYSIOLOGY

Risk factors

Deep wound that is long-standing, recurrent, or traumatic

Renal failure

Chronic hyperglycemia

Peripheral artery disease

Systemic symptoms

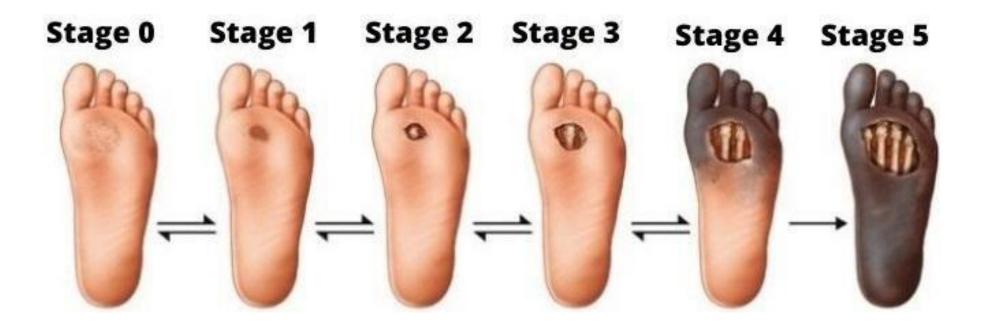
Fever

Chills

Marked leukocytosis

- Uncommon
- Can indicate severe, limb/lifethreatening infection

20-60% of infections


Correlates to severity of infection

2023 IWGDF/IDSA CLASSIFICATION

IWGDF: International Working Group on the Diabetic Foot IDSA: Infectious Diseases Society of America

Clinical Classification	IWGDF/IDSA Classification
No systemic or local symptoms or signs of infection	I (Uninfected)
 Infected: at least 2 of the following: Local swelling or induration Erythema >0.5 but <2 cm around the wound Local tenderness or pain Local increased warmth Purulent discharge 	2 (Mild) *no other cause of inflammatory response (trauma, gout, thrombosis, venous stasis)
 Infection with no systemic manifestation Erythema >2 cm from wound margin and/or Tissue infected deeper than skin and subcutaneous tissues (tendon, muscle, or joint) 	3 (Moderate)
 Any foot infection with systemic manifestations (SIRS) Temperature >38°C or <36°C Heart rate >90 bpm Respiratory rate >20 breaths/min WBCs >12,000/mm^3 	4 (Severe)
Infection involving bone	Add "O"

WAGNER CLASSIFICATION OF DFI

AIC CORRELATION TO DFI SEVERITY

Parameter	Wagner Classification				
HgbAIC	I	2	3	4	5
6.5-7.5%	I	0	<u>4</u>	0	0
7.6-8.5%	0	6	<u>21</u>	7	0
8.6-9.5%	0	0	4	<u>18</u>	2
>9.5%	0	0	0	7	<u>18</u>

- AIC has a linear relationship with the Wagner Classification of DFI
 - Most patients with Grade 4 and 5 have a Hgb A1c
 >8.5% (p<0.0001)

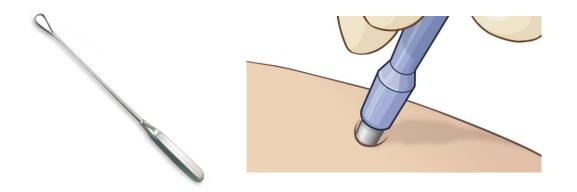
PATHOGENS

Gram positive cocci

- Beta-hemolytic Streptococcus
- Staphylococcus aureus

Key point: DFI are often POLYMICROBIAL but commonly include skin pathogens like Streptococcus and Staphylococcus species

Moderatesevere


Mild

Mix of gram positive, gram negative, and anaerobic species Anaerobes most common with foot ischemia or gangrene

APPROPRIATE CULTURE

Soft-tissue Diabetic Foot Infection

- Aseptic collection of a tissue specimen from the wound for culture
 - o Curettage or biopsy

Diabetic Foot Osteomyelitis

- Intra-operative or percutaneous bone cultures
- Low correlation between bone and soft-tissue culture results (<50%)
 - Highest correlation is with S. aureus (46.7%)
- Ongoing trial to determine if wound vs bone cultures affect treatment outcomes
 - BeBoP trial

COLONIZATION VS INFECTION

Colonization: presence of bacteria on the wound surface <u>without</u> evidence of invasion into host tissues

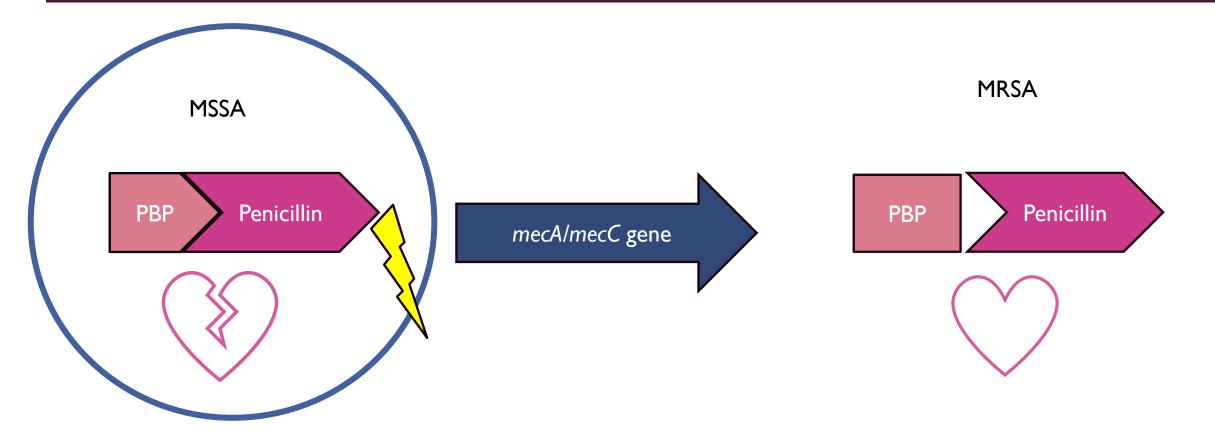
Infection: multiplication of organisms that induce an inflammatory response

Tissue damage

Masking by peripheral neuropathy, peripheral artery disease, or immune dysfunction

KNOWLEDGE CHECK

Which of the following is not involved in the pathophysiology of diabetic foot infections?


- A. Peripheral neuropathy
- B. Diabetic retinopathy
- C. Diminished neutrophil function
- D. Peripheral artery disease

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS

MRSA

MRSA MECHANISM OF RESISTANCE

MSSA TREATMENT OPTIONS FOR DFI

Drug	Toxicities and monitoring	Route	Dosing assuming normal renal function
Cephalexin		PO	500 mg QID
Cefazolin		IV	I-2 g Q8H
Oxacillin	GI upset	IV	I-2 g Q4H
Nafcillin		IV	I-2 g Q4H
Amoxicillin/clavulanate	Non-C. difficile associated diarrhea	PO	875 mg amoxicillin/125 mg clavulanate Q12H
Ampicillin/ sulbactam	Injection site pain	IV	3 g Q6H 20

Lexicomp Online, Pediatric and Neonatal Lexi-Drugs Online. Waltham, MA: UpToDate, Inc.; July 30, 2021.

MRSA TREATMENT OPTIONS FOR DFI

Drug	Toxicities and monitoring	Route	Dosing assuming normal renal function
Vancomycin	Nephrotoxicity and ototoxicity Requires daily therapeutic drug monitoring	IV	10-15 mg/kg Q8-12H, with adjustments based on trough levels
Daptomycin	Myopathy and rhabdomyolysis Requires weekly monitoring of creatinine kinase	IV	Superficial: 4-6 mg/kg Q24H Bone: 6-10 mg/kg Q24H
Linezolid	Myelosuppression Requires weekly monitoring of CBC	IV/PO	600 mg Q12H
Trimethoprim- sulfamethoxazole	Hyperkalemia, hyponatremia, hypoglycemia, acute kidney injury	PO	2 double strength (180 mg trimethoprim/800 mg sulfamethoxazole) tablets twice daily

Lexicomp Online, Pediatric and Neonatal Lexi-Drugs Online. Waltham, MA: UpToDate, Inc.; July 30, 2021.

MRSA TREATMENT OPTIONS FOR DFI

Drug	Toxicities and monitoring	Route	Dosing
Clindamycin	C. difficile infection	PO/IV	PO: 300-450 mg Q6-8H IV: 600 mg/day in 2-4 divided doses
Doxycycline	Photosensitivity, skin hyperpigmentation, and esophageal injury	PO/IV	PO/IV: 100 mg Q12H
Levofloxacin	Tendonitis/tendon rupture, peripheral neuropathy,	PO/IV	Mild-moderate: 500 mg PO Q24H Moderate-severe: 750 mg IV Q24H
Moxifloxacin	CNS effects (neuroexcitation), exacerbation of myasthenia gravis QT prolongation	PO/IV	400 mg Q24H

Lexicomp Online, Pediatric and Neonatal Lexi-Drugs Online. Waltham, MA: UpToDate, Inc.; July 30, 2021.

KNOWLEDGE CHECK

How would you classify a patient presenting with a diabetic foot ulcer with penetration into the bone, fever of 39°C, and WBCs of 15,000 cells/mm^3?

- A. Class 2
- B. Class 3-O
- C. Class 4

GUIDELINE RECOMMENDATIONS FOR MRSA COVERAGE IN DFI

MRSA RISK FACTORS 2023

- Prolonged hospitalization
- Intensive care admission
- Recent hospitalization
- Recent antibiotic use
- HIV infection
- Hemodialysis
- Discharge with long-term central venous access
- Invasive procedures
- Admission to nursing home
- Presence of open wounds

MRSA PREVALENCE

- Meta-analysis of ~11000 diabetic foot infections worldwide showed MRSA prevalence of 16.8%
 - 1.8% of the population is colonized with MRSA
 - MRSA accounts for 32-39% of all S. aureus infections at local hospital systems

Acta Diabetol. 2019 Aug; 56(8): 907-921, PLoS One. 2016; 11(8): e0161658; Int J Low Extrem Wounds. 2019 Sep; 18(3): 236-246. J Antimicrob Chemother. 2018 Jun; 73(6): 1692–1699

GENDER AND MRSA DIABETIC FOOT INFECTIONS

Setting, year	Number of patients	Finding	P-value
Outpatient, specialized diabetic foot clinic, 2022	75	Male gender was an independent risk factor for MRSA DFI	0.029
Inpatient, 2010-2014	318	Male gender was an independent risk factor for MRSA DFI	0.0085
Inpatient in Nigeria, 2022	217	Male patients with diabetic foot ulcers were more infected with MRSA than females	<0.04

PLoS One. 2016; 11(8): e0161658. Int J Low Extrem Wounds. 2022 Apr 13. Diabetes Obes Int J 2022, 7(2): 000254.

NEED FOR BETTER DE-ESCALATION TOOLS IN DFI

Vancomycin overuse

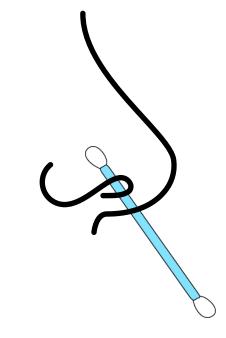
- 15% of DFI patients had MRSA infection and 86% received MRSA-targeted therapy
- 78% of those patients received vancomycin

Vancomycin increases the risk for VRE bacteremia

• Higher risk with longer durations of therapy

MRSA NARES SCREENING

29


MRSA NARES SCREENING

Nasal swab to detect colonization of MRSA in the nasal cavity

Nares are most common site of colonization

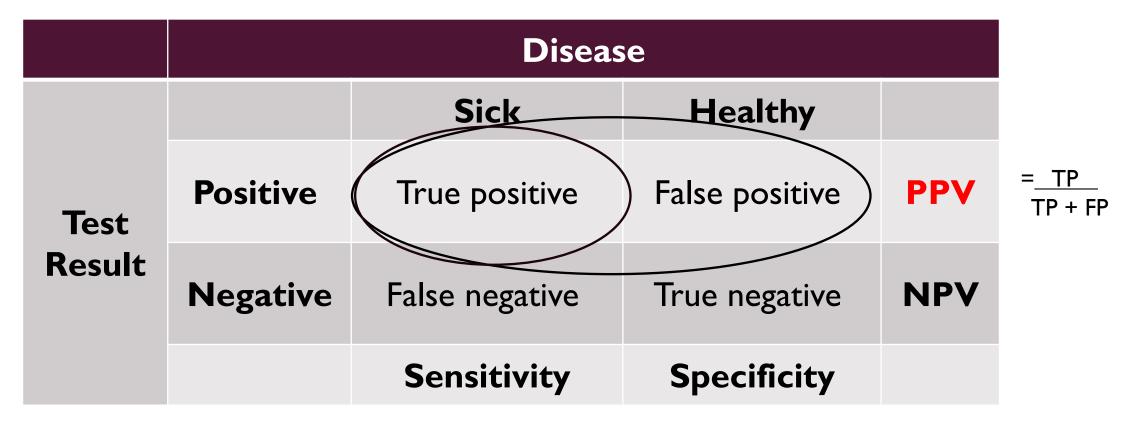
Two modalities:

- CHROMagar[™] culture
- Polymerase chain reaction (PCR)

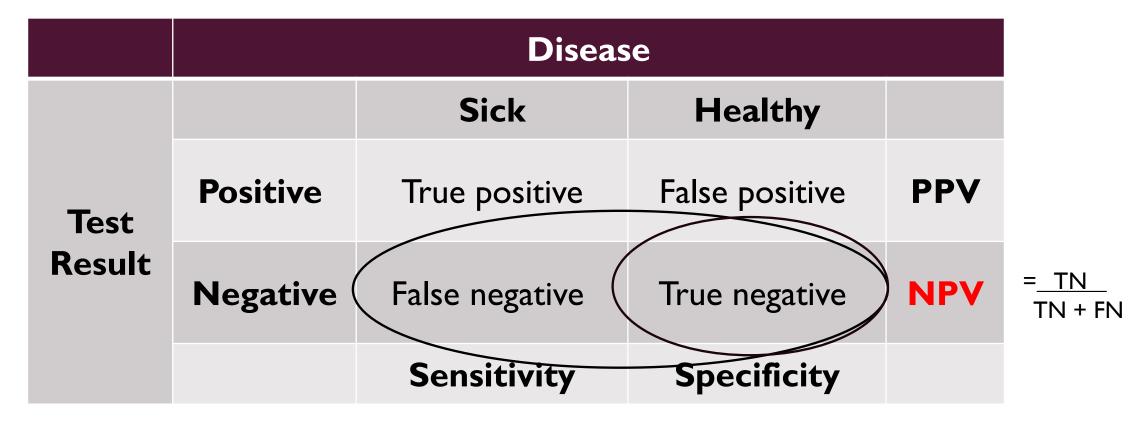
COMPARISON OF MRSA NASAL TEST MODALITIES

Test	PCR	CHROMagar™
Time to result	I-2 hours	18-48 hours
Mechanism	Polymerase chain reaction (PCR)	Agar that selects for MRSA
Sensitivity	91.9%	91.8%
Specificity	97.9%	97.2%
Price	\$36/cassette	\$6.70/plate

https://www.cepheid.com/en-US/tests/hai-other-infectious-diseases/xpert-mrsa-nxg.html, https://www.chromagar.com/en/product/chromagar-mrsa/


STATISTICS OVERVIEW

32


STATISTICS OVERVIEW

	Disease				
		Sick Healthy			
Test Result	Positive	True positive	False positive	PPV	
	Negative	False negative	True negative	NPV	
		Sensitivity	Specificity		

POSITIVE PREDICTIVE VALUE

NEGATIVE PREDICTIVE VALUE

SENSITIVITY

	Disease				
		Sick	Healthy		
Test	Positive	True positive	False positive	PPV	
Result	Negative	False negative	True negative	NPV	
		Sensitivity	Specificity		
		= <u>TP</u>			

TP + FN

SPECIFICITY

	Disease			
		Sick	Healthy	
Test	Positive	True positive	False positive	PPV
Result	Negative	False negative	True negative	NPV
		Sensitivity	Specificity	

=<u>TN</u> FP + TN

MRSA NARES AND PNEUMONIA

38

SUPPORTING EVIDENCE FOR MRSA NARES IN PNEUMONIA

Predictive Value of Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Swab PCR Assay for MRSA Pneumonia (2014)

Population	Intervention	Outcome	Conclusion
 Patients with confirmed pneumonia (CAP or HCAP) Nasal swab MRSA PCR test Bacterial culture (blood 	Calculation of NPV, PPV, sensitivity, and specificity	 NPV: 99.2% PPV: 35.4% Sensitivity: 88% Specificity: 90.1% 	A negative MRSA nasal swab may be reasonably used to guide antibiotic de- escalation

or respiratory)

SUPPORTING EVIDENCE FOR MRSA NARES IN PNEUMONIA

Nasal Methicillin-Resistant Staphylococcus aureus (MRSA) PCR Testing Reduces the Duration of MRSA-Targeted Therapy in Patients with Suspected MRSA Pneumonia (2018)

Population	Intervention	Outcome	Conclusion
Patients initiated on vancomycin or linezolid for suspected MRSA pneumonia	Retrospective review of pharmacist-ordered MRSA PCR testing on duration of MRSA-targeted antimicrobials	 Use of MRSA nasal PCR reduced MRSA-targeted antimicrobial duration by 46.6 hours (p<0.0001) No significant differences in hospital LOS, days to clinical improvement, or hospital mortality 	The MRSA nasal PCR test is a powerful antimicrobial stewardship tool and greatly reduces duration of MRSA- targeted therapy without negatively impacting clinical outcomes

2019 PNEUMONIA GUIDELINES FOR USE OF MRSA NARES

Negative test

MRSA coverage not needed

Positive test

- Initiate MRSA-targeted therapy
- Collect blood and sputum cultures

41

• If negative: de-escalate

KNOWLEDGE CHECK

Which statistical value helps us rule out MRSA infection when MRSA nares are negative?

- A. Low PPV
- B. Low NPV
- C. High PPV
- D. High NPV

NPV OF MRSA NARES IN OTHER INFECTIONS

MERGENHAGEN ET AL. 2020

Determining the Utility of Methicillin-Resistant Staphylococcus aureus Nares Screening in Antimicrobial Stewardship

Population	Intervention	Outcomes	Conclusion
Patients from VA medical centers nationwide	561, 325 clinical cultures isolated from various anatomical sites taken within 7 days of MRSA nasal swab (analyzed via PCR or culture)	 NPV Overall: 96.5% Bloodstream: 96.5% IAI: 98.6% Respiratory: 96.1% Wound: 93.1% Urinary: 99.1% PPV Overall: 24.6% 	MRSA nares screening may be a powerful stewardship tool for de-escalation and avoidance of empirical anti- MRSA therapy

CLINICAL QUESTION: CAN MRSA NARES SCREENING BE USED AS A DE-ESCALATION TOOL FOR DIABETIC FOOT INFECTIONS?

UTILITY OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS NARES SCREENING FOR PATIENTS WITH A DIABETIC FOOT INFECTION

MERGENHAGEN ET AL.

Objective

 To determine the negative predictive value of MRSA nares screening in the determination of subsequent MRSA infection in patients with diabetic foot infection

Design

 Retrospective cohort across VA medical centers from 2007-2018

Inclusion criteria

- ≥18 years old
- MRSA nasal swab on admission or transfer to a VA inpatient facility
 - PCR or chromogenic agar
- ICD code for DFI
- Subsequent cultures

Exclusion criteria

Outpatient

Included cultures

Obtained after, but within 7 days of MRSA nasal swab

Classification

Superficial: swab or other site not classified as "deep"

Deep: abscess, fluid, surgical, aspirate, or bone culture

Primary outcomes

- NPV
- PPV
- Sensitivity
- Specificity

Secondary analysis

- Deep vs superficial
- Geographic region
- Foot vs toe culture
- 2007-2012 vs 2013-2018

BASELINE CHARACTERISTICS

Characteristic	Result (n=8,163)
Age, mean (SD)	65.0 (9.2)
Men,%	98.9
Nasal Screening	
PCR	72.3%
Standard culture	27.7%
Positive screening result	17.8%
Pathogen in culture	
MRSA	7.5%
MSSA	24.8%
Coagulase negative Staphylococcus spp.	11.5%
Enterococcus spp.	14.7%
Escherichia spp.	4.9%
Klebsiella spp.	3.1%
Morganella spp.	2.5%
Proteus spp.	7.4%
Pseudomonas spp.	6.9%
Streptococcus spp.	5.1%

RESULTS

Screening Parameter	No of isolates	% sensitivity	% specificity	% PPV	% NPV
Whole cohort	8,163	50.2	89	48.7	89.6
Deep culture	5,499	48.8	89.2	48.7	89.2
Superficial culture	2,664	53.2	88.6	48.7	90.3
Northeast	1,190	53.4	89.6	53.7	89.5
South	2,727	50.4	87.4	46.4	89.0
Midwest	1,658	54.I	91.9	57.8	90.8
West	2,588	45.7	88.6	43.6	89.4
2007-2012	2,947	53.4	86.4	44.5	90.1
2013-2018	5,216	48.5	90.5	51.7	89.3
Culture from foot	5,563	51.2	88.2	47.4	89.7
Culture from toe	2,600	48.2	90.7	51.9	89.4
Duplicates removed	5,403	51.8	90.0	51.0	90.3

Strengths

- Large sample size across entire US
- Consistent NPV across subgroups
- MRSA swabs taken at admission

Limitations

- No assessment of antibiotic exposure in relation to culture data
- Positive culture does not confirm infection
- Clinical status of patient was not assessed

CONCLUSIONS

Large multicenter trial with high negative predictive values of MRSA nares in relation to diabetic foot infections

VA population may lead to practitioner discomfort in generalization of results to other populations

No assessment of clinical outcomes on MRSA nares use

Reasonable subgroup analysis, with need for further evaluation of NPV compared to MRSA risk factors

CORRELATION BETWEEN PATIENTS WITH MRSA NARES COLONIZATION AND DIABETIC FOOT INFECTION

BRONDO ET AL.

Objective

- To evaluate the utility of MRSA nares to rule out MRSA in DFIs using NPV
- Secondary objectives:
 - Evaluate the **PPV, sensitivity, and specificity** of patients with positive MRSA nasal swabs and MRSA DFIs
- Characterize the **microbiology** of DFIs in the veteran population

Design

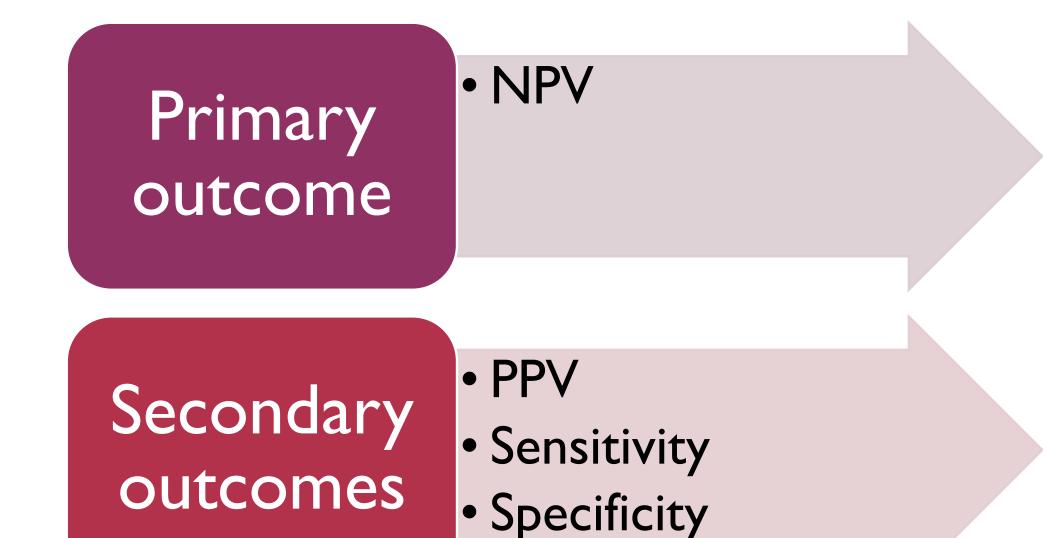
 Singe-site retrospective chart review from October 2013-October 2019

Inclusion criteria

- Age ≥18
- Admitted with a DFI
- MRSA nares test result
- Diabetic foot wound cultures (swab, wound, tissue, abscess, or bone)

Exclusion criteria

- Pregnancy
- History of MRSA infection within I year prior to index admission for DFI


MRSA nasal swab

Primarily analyzed via PCR

MRSA culture used if PCR unavailable

Culture data

Separated by location collected (bone, tissue, wound, abscess, or swab)

BASELINE CHARACTERISTICS

Characteristic	Result (n=200)		
Age, mean (SD)	63 (10.5)		
White	68%		
African American	14.5%		
Other race	17.5%		
Culture type, n (%)			
Bone	127 (63.5)		
Tissue	90 (45)		
Wound	87 (43.5)		
Abscess	29 (14.5)		
Swab	10 (5.0)		
Organisms grown, n (%)			
MSSA	56 (28)		
MRSA	25 (12.5)		
Other Gram +	34 (17.0)		
Gram -	84 (42.0)		
Anaerobes	22 (11.0)		

RESULTS

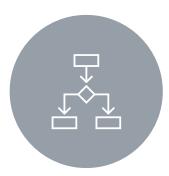
Endpoint	Result
Negative predictive value	94%
Secondary endpoints	
Positive predictive value	58%
Sensitivity	56%
Specificity	94%

Strengths

- Higher MRSA prevalence
- Consistent NPV with Mergenhagen et al.

Limitations

- No timeline association of MRSA nares and culture data
- Clinical status of patient was not assessed


CONCLUSION

Supplement to Mergenhagen et al. further replicating NPV of MRSA nares with diabetic foot infections

Local and recent data

No assessment of clinical outcomes

Small sample size limits reliability

CLINICAL UTILITY OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS NASAL PCR TO STREAMLINE ANTIMICROBIAL USE IN TREATMENT OF DIABETIC FOOT INFECTION WITH OR WITHOUT OSTEOMYELITIS

HARB ET AL.

Objective

 To evaluate the effect of MRSA nasal PCR testing on MRSA-targeted antibiotic use and clinical outcomes in patients with DFI

Design

 Single center retrospective quasi-experimental study

INTERVENTION

Protocol

Implemented December 2020

Local clinical pathway guiding de-escalation with MRSA nares

MRSA nares order added to vancomycin order set

Clinician and pharmacy specialist education

Groups

PRE-protocol (5/1/2019-4/30/2020) POST-protocol (12/1/2020-11/30/2021)

Inclusion criteria

- Age ≥18
- MRSA nasal PCR
- Culture data obtained from site of diabetic foot infection on same admission
 - Wound swab
 - Tissue
 - Abscess
 - Bone

Exclusion criteria

 History of MRSA infection within I year prior to index admission for DFI

Primary outcome

Median hours of empiric inpatient MRSA-targeted antibiotic therapy

Secondary outcomes

- Proportion of patients needing MRSA coverage added back for MRSA infection after de-escalation
- Hospital readmission
- Length of hospital stay
- Patient mortality
- Acute kidney injury

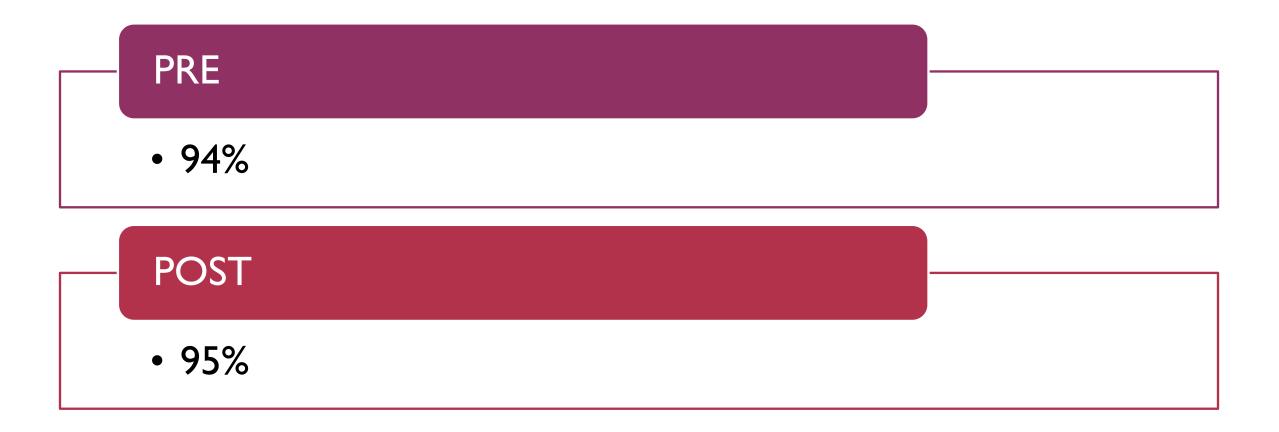
STATISTICAL ANALYSIS

- A Wilcoxon Rank Sum test was used to assess the difference between the groups for the primary outcome.
- A sample size of 32 patients in total was estimated to meet 80% power for the primary outcome.
- For numerical secondary endpoints, Wilcoxon Rank Sum test was used to assess the difference between the groups.
- For categorical secondary endpoints, a chi-square or Fisher's Exact test was used to assess the difference between the groups.

BASELINE CHARACTERISTICS

Characteristic	PRE (n=83)	POST (n=68)
Age, median [IQR]	66.8 [56.1-72.9]	63.7 [55.7-68.5]
Male (%)	97.6	97.1
Alc (mean)	8.3 ±2.2	8.5 ±1.9
Comorbid conditions, n (%)		
Peripheral vascular disease	27 (32.5)	22 (32.4)
Transplant	I (I.2)	I (I.5)
Malignancy	11 (13.2)	2 (2.9)
Osteomyelitis	36 (43.3)	36 (52.9)
Microbiologic culture, n (%)		
Swab	6 (7.2)	0
Wound	33 (39.7)	26 (38.2)
Tissue	42 (50.5)	44 (64.7)
Abscess	16 (19.2)	5 (7.4)
Bone	46 (55)	30 (44.1)
Organisms Isolated, n (%)		
MRSA	10 (12.0)	12 (17.6)
MSSA	18 (21.7)	26 (38.2)
Other Gram Positive	41 (49.3)	36 (52.9)
Gram negative	38 (45.8)	18 (26.4)
Anaerobes	14 (16.9)	8 (11.8)
Culture negative	13 (15.7)	9 (13.2)

RESULTS


Outcome	PRE (n=83)	POST (n=68)	p-value
Primary endpoint: duration of empiric MRSA- targeted antibiotic therapy, hours, (median [IQR])	72 (27-120)	72 (27-120) 24 (12-72)	
Secondary endpoints			
MRSA coverage added back for MRSA, %	0	0	
Acute kidney injury, %	15.7	6.1	0.07
Length of stay, days (median [IQR])	8 (5-13)	9 (6.3-14)	0.32
In-hospital mortality, %	2.4	2.9	1.00
9-month readmission due to DFI, %	18.1	31.3	0.06

BMC Infect Dis. 2023 May 5;23(1):297

RE-ADMISSIONS ASSESSMENT

Group	6-month	9-month	I2-month
PRE (n=83)			
All-cause, n (%)	35 (42.2)	35 (42.2)	37 (44.6)
Due to DFI, n (%)	14 (16.8)	15 (18.1)	16 (19.3)
POST (n=68)			
All-cause, n (%)	31 (45.6)	34 (50)	36 (52.9)
Due to DFI, n (%)	19 (27.9)	21 (30.9)	22 (32.4)

NEGATIVE PREDICTIVE VALUES

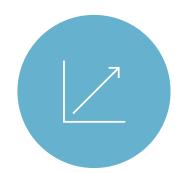
Strengths

- Assessed stewardship and clinical outcomes
- Consistent NPV with previous studies

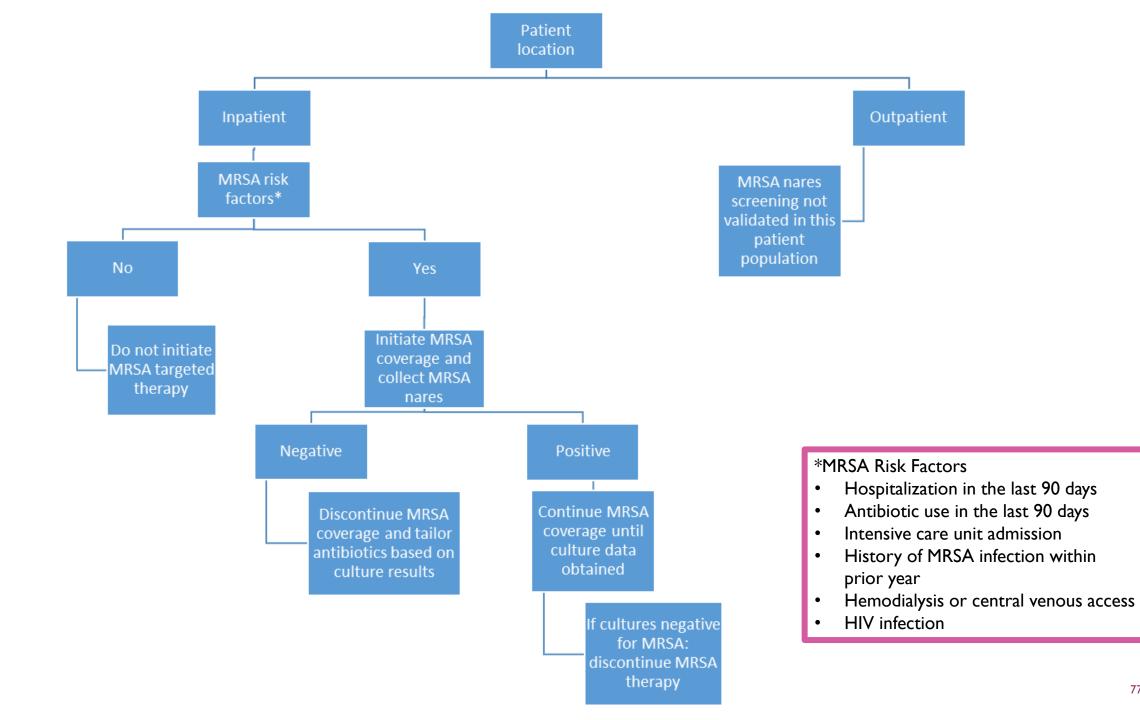
Limitations

- Source control not assessed
- ED antibiotic exposure not assessed
- Antibiotics used between groups not specified

CONCLUSION


MRSA nares screening decreases length of MRSAtargeted antibiotic exposure

No statistically significant sacrifice of clinical outcomes


Further study in non-VA population is warranted with larger sample size

Further validation of high NPV

ALGORITHM

POST-TEST QUESTIONS

POST TEST QUESTION #I

Based on current local data, what percentage of patients have diabetic foot infections that grow MRSA on culture?

- A. 12-17%
- **B.** 15-32%
- C. 40-50%
- D. 60-70%

POST TEST QUESTION #2

A 52 year old male is admitted to the podiatry service at your institution. He reports wearing a new pair of boots that caused a blister which has progressively worsened over the last 2 weeks. On exam, the wound is red and swollen, with invasion into the tendon, but without gangrene or ischemia. His vitals are normal and his WBC's are 13. His past medical history include T2DM, HTN, and HLD. His A1c on admission is 10.3 and he reports taking metformin 500 mg twice daily. He recently was hospitalized for diabetic ketoacidosis last month. What is a reasonable empiric regimen to start in this patient?

- A. Piperacillin/tazobactam
- B. Cephalexin
- C. Vancomycin + ceftriaxone
- D. Daptomycin

POST TEST QUESTION #3

A 52 year old male is admitted to the podiatry service at your institution. He reports wearing a new pair of boots that caused a blister which has progressively worsened over the last 2 weeks. On exam, the wound is red and swollen, with invasion into the tendon, but without gangrene or ischemia. His vitals are normal and his WBC's are 13. His past medical history include T2DM, HTN, and HLD. His A1c on admission is 10.3 and he reports taking metformin 500 mg twice daily. He recently was hospitalized for diabetic ketoacidosis last month. Today is day 2 of hospitalization and he is scheduled for wound debridement tomorrow. His MRSA nares have resulted and are negative. His wound culture is still pending. The podiatry attending is hesitant to discontinue MRSA coverage. What could you say that might convince them to de-escalate?

- A. MRSA nares have a positive predictive value of 90-94%. It is unlikely that MRSA is a causative pathogen for this patient
- B. MRSA nares have a negative predictive value of 90-94%. It is unlikely that MRSA is a causative pathogen for this patient
- C. Negative MRSA nares tests mean the patient definitively does not have MRSA as a causative pathogen

POST TEST QUESTION #4

A 52 year old male is admitted to the podiatry service at your institution. He reports wearing a new pair of boots that caused a blister which has progressively worsened over the last 2 weeks. On exam, the wound is red and swollen, with invasion into the tendon, but without gangrene or ischemia. His vitals are normal and his WBC's are 13. His past medical history include T2DM, HTN, and HLD. His A1c on admission is 10.3 and he reports taking metformin 500 mg twice daily. He recently was hospitalized for diabetic ketoacidosis last month. **The attending accepts your recommendation to de-escalate.What is the empiric regimen you recommend?**

- A. Vancomycin
- B. Ceftriaxone
- C. Aztreonam
- D. Cefazolin + piperacillin-tazobactam

Tina Beck, PharmD, MSCR, BCPS

• Mentor

Travis Carlson, PharmD, BCIDP

• Critiquer

CO-CURRICULAR CREDIT QR CODE

Claiming CE Credit From FSOP

- Scan QR code or go to https://www.lecturepanda.com/r/MRSANares
- 1^{st} time users \rightarrow create account.
 - Returning users \rightarrow login.
 - Profile must include NABP e-Profile ID and birth date (MM/DD) for credit.
- Register for live CE event (only register if you plan to claim CE)
- Complete post-test and activity evaluation form.
 - Upon opening test, access code will be requested.
- Access code for February 9,2024:
 - Pharmacist: 322792
 - Technician: 728472

Deadline to obtain CE credit is March 22, 2024

