Feel the Rhythm! Feel the Rhyme! Give it up, it's Lidocaine's Time:

Lidocaine vs Amiodarone for Shock Refractory VF/pVT

Markus Reedy, PharmD. PGY 2 Pharmacotherapy Resident UIW Feik School of Pharmacy

Financial Disclosures

This speaker has no financial conflicts of interest to disclose

Pharmacist Objectives

- **1.** Discuss the role of pharmacologic treatment options for shockable versus non-shockable rhythms
- 2. Compare and contrast lidocaine and amiodarone for pulseless ventricular tachycardia (VT)/ventricular fibrillation (VF) in terms of mechanisms of action (MOA), pharmacokinetics (PK), and dosing
- 3. Interpret primary literature to compare the safety and efficacy of lidocaine versus amiodarone for pulseless VT/VF
- 4. Using a patient case, develop a treatment plan for a patient in shock-refractory pulseless VT/VF

Pharmacy Technician Objectives

- **1.** Identify differences in drug preparation for lidocaine and amiodarone during advanced cardiac life support (ACLS)
- 2. Using the ACLS algorithm, identify when antiarrhythmic drugs may be indicated
- 3. Discuss primary literature comparing the use of lidocaine vs amiodarone for shock-refractory pulseless VT/VF

Abbreviations

Abbreviation	Meaning	Abbreviation	Meaning
ACLS	Advanced cardiac life support	pVT	Pulseless ventricular tachycardia
ОНСА	Out-of-hospital cardiac arrest	VF	Ventricular fibrillation
IHCA	In-hospital cardiac arrest	PEA	Pulseless electrical activity
CPR	Cardiopulmonary resuscitation	IV/IO	Intravenous, intraosseous
EKG	Electrocardiogram	SA/AV node	Sinoatrial/Atrioventricular
ERP	Effective refractory period	CVD	Cardiovascular disease
EMS	Emergency medical services	ROSC	Return of spontaneous circulation
mRS	Modified rankin scale	GWTG-R	Getting with the guidelines registry

Knowledge Check 1

TS is a 32-year-old female admitted for concerns of an NSTEMI. A CODE BLUE is called, and you are the pharmacist who responds. CPR is in progress, defibrillator/monitor pads are attached, rhythm check shows VF, and a shock is deployed followed by epinephrine 1mg. Which medication do you recommend to the team? (TS weighs 54kg and height is 69 inches)

- A. Amiodarone 150 mg IVP
- B. Amiodarone 300 mg IVP
- C. Lidocaine 40 mg IVP
- D. Lidocaine 80 mg IVP

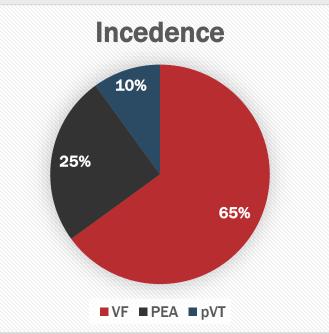
Overview of ACLS

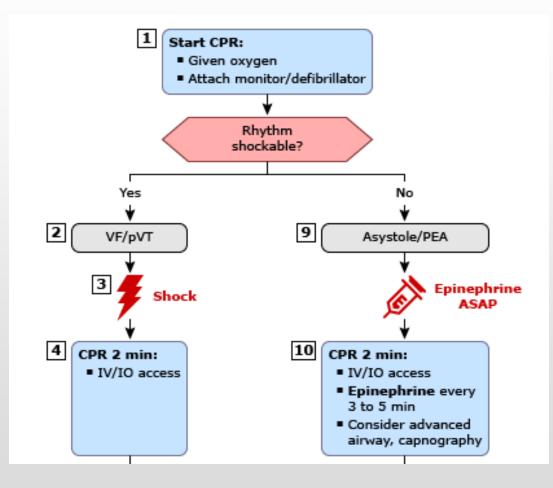
What is ACLS?

ACLS = Advanced Cardiac Life Support

- Guidelines to treat life-threatening cardiovascular conditions
- Resuscitation efforts aimed to restore spontaneous circulation and retain intact neurological function

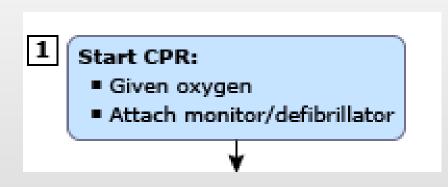
Sudden cardiac arrest


Cessation of cardiac activity with hemodynamic collapse


Arrhythmias of sudden cardiac arrest

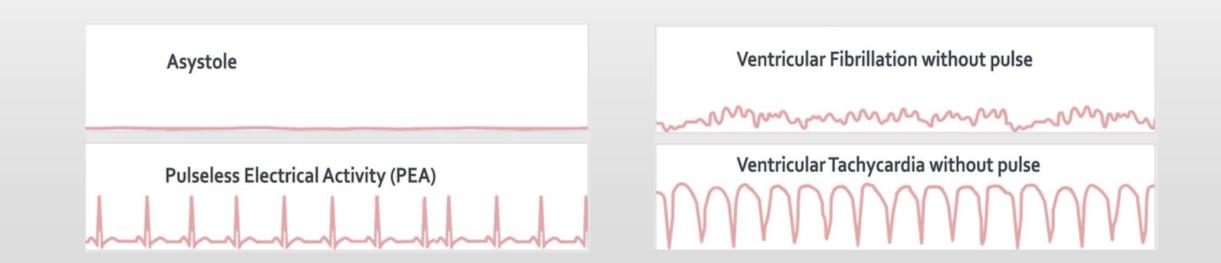
- Pulseless ventricular tachycardia (pVT)/ventricular fibrillation (VF)
- Pulseless electrical activity (PEA)
- Asystole

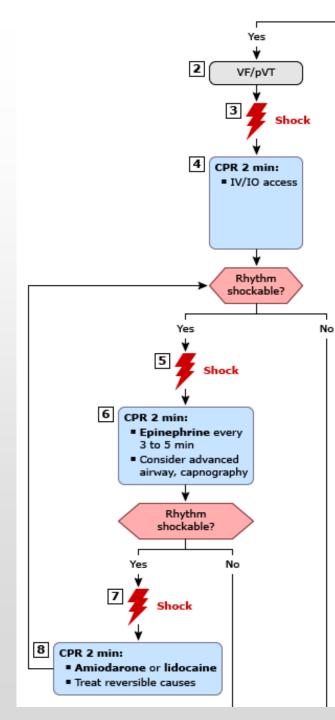
Epidemiology


- >135 million cardiovascular deaths each year
- Rates of OHCA range from 20 to 140 per 100,000 people
 - Survival ranges from 2% to 11%
- IHCA has median survival rate of ~25%

ACLS Algorithm

Step 1: CPR ASAP

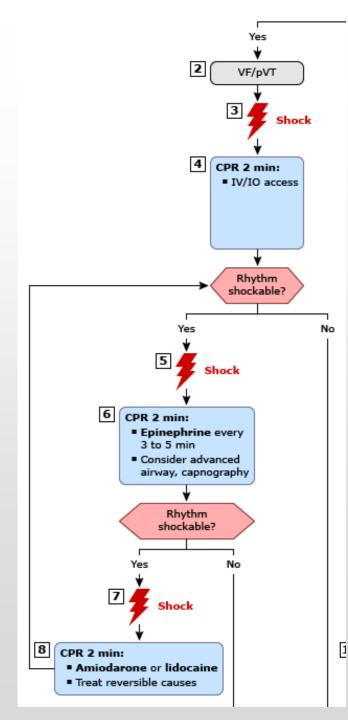



- High quality CPR is the singlemost important intervention
- 30-day survival with CPR 10.5%
- 30-day survival without CPR 4%

Shockable vs Non-shockable Rhythms

Non-shockable - Asystole and PEA

Shockable - VF and pVT



[]

Steps 2 – 4: Shock

- Attach defibrillator pads while CPR performed
- During rhythm check, briefly stop CPR
- Shockable rhythm detected → allow defibrillator to charge and resume CPR
- Stop compressions when charged and SHOCK
- Resume CPR and gain IV/IO access

Shocking Outcomes

Success of defibrillation and patient survival depends on duration of the arrhythmia

Patients shocked within two minutes:

- Survival at 1 year 25.7% vs 15.5%
- Survival at 3 years 19.1% vs 11%
- Survival at 5 years 14.7% vs 7.9%

Shock-Refractory VF/pVT

Refractory after 2 shocks

- >50% of VF
- Assess shockable rhythm
- CPR 2 minutes
- Administer:
 - Epinephrine 1mg IV/IO every 3 5 minutes (every other pulse check)

Refractory after 3 shocks

- >20% of VF
- Assess shockable rhythm
- CPR 2 minutes
- Administer:
 - Amiodarone 300mg bolus, repeat with 150mg bolus or
 - Lidocaine 1 1.5mg/kg, repeat with 0.5 – 0.75mg/kg

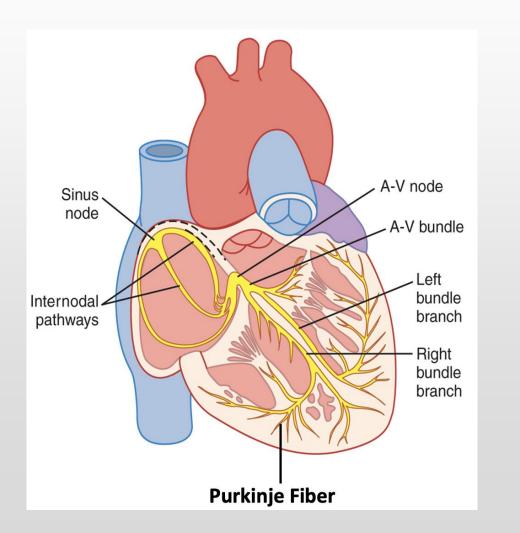
Repeat steps as necessary

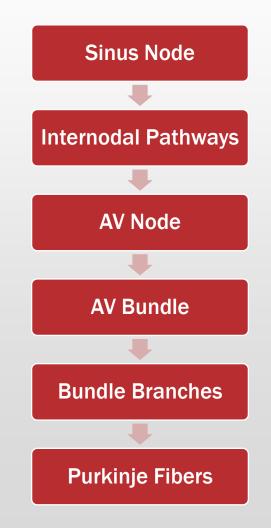
Knowledge Check 2

Which two rhythms are shockable during ACLS?

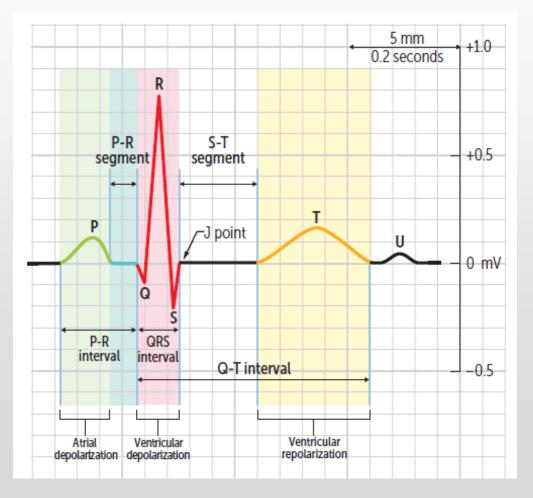
- A. PEA, Asystole
- B. VF, pVT
- C. PEA, VF
- D. PEA, pVT

Knowledge check 2

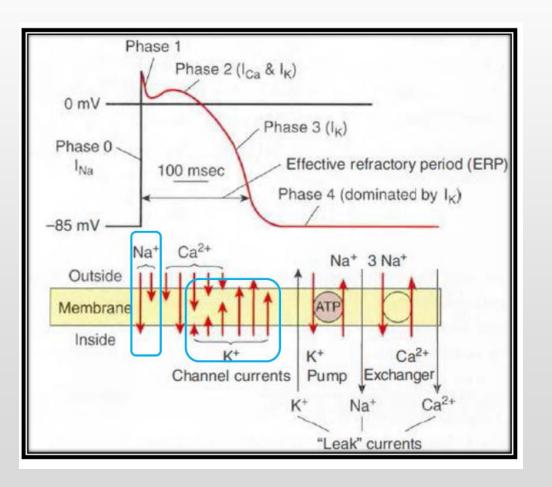

Which two rhythms are shockable during ACLS?


- A. PEA, Asystole
- B. VF, pVT
- C. PEA, VF
- D. PEA, pVT

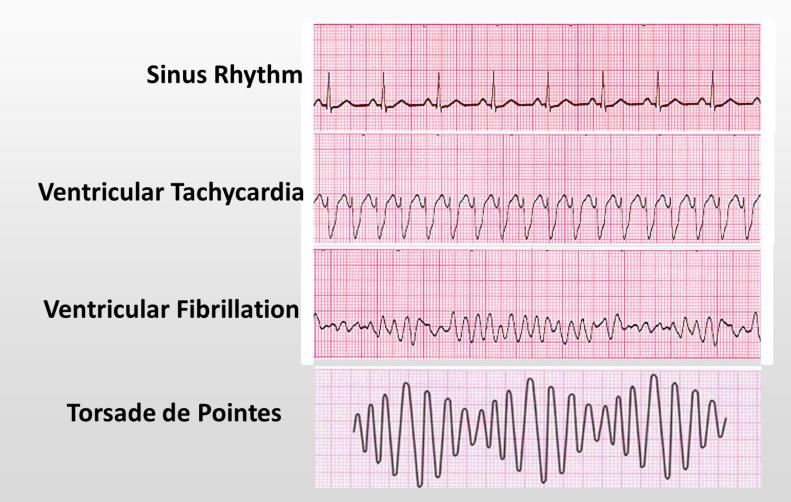
Review of the Rhythms



Normal Conduction System

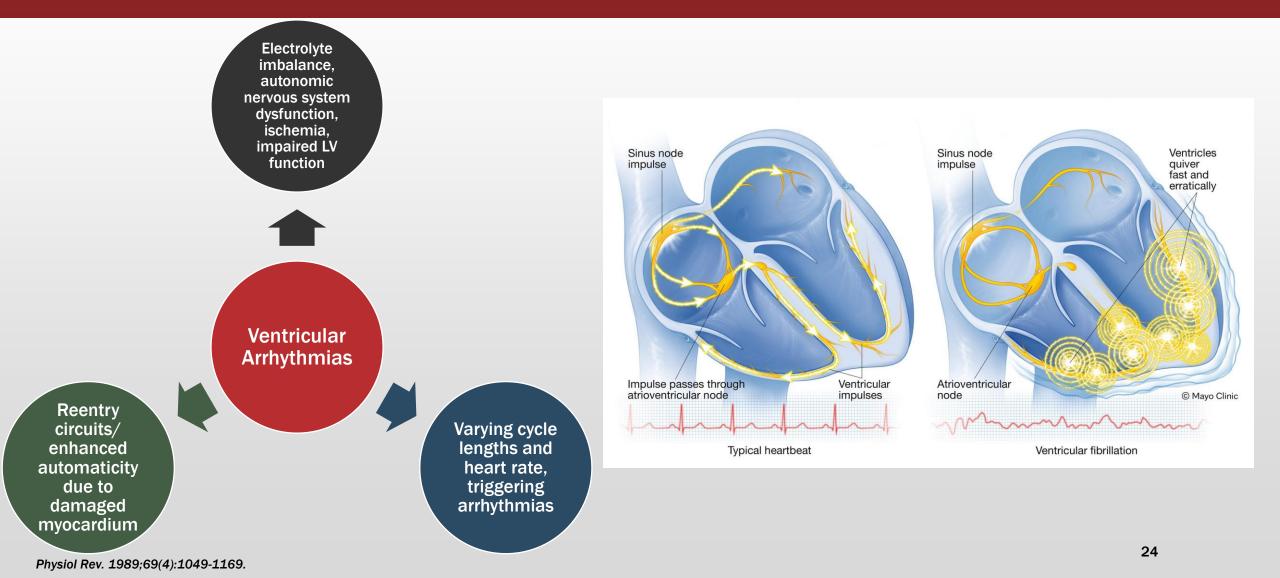


Review of a Normal EKG

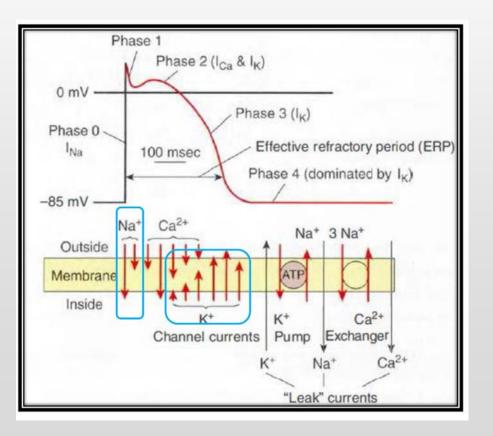

EKG Basics			
P wave	Atrial depolarization; repolarization masked by QRS		
QRS complex	Ventricular depolarization		
T wave	Ventricular repolarization		

Action Potentials

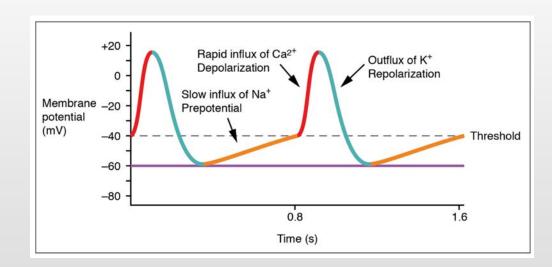
- Phase 0, 1, 2, part of 3
 - Cell is refractory to initiation of new action potentials
- Effective Refractory Period (ERP)
 - Stimulation of the cell does not produce a new action potential
- Damaged cells promote reentry circuits → shorter ERP and arrythmias
- Prolonging ERP makes irregular impulses disappear


Ventricular Arrythmias

Risk Factors for VF/pVT


Myocardial Infarction	CVD	Increased Sympathetic Tone
 Ischemia → myocardial scarring 	Ventricular hypertrophyHTNRAAS activation	 Hyperthyroidism Exercise
Metabolic Disturbances	Oxidative Stress	Non-Modifiable Factors
 Diabetes Obesity 	• Smoking • Alcohol use	 Age Genetic mutation/ polymorphism

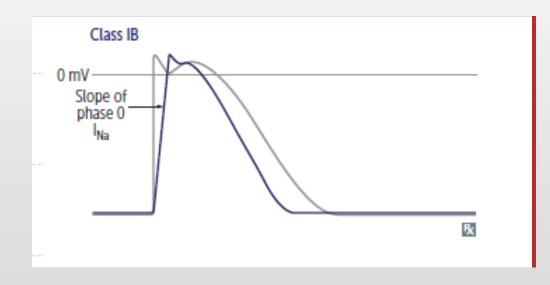
Ventricular Arrythmias



What can we do to Stabilize Arrhythmias?

Ventricular Cells

AV Node

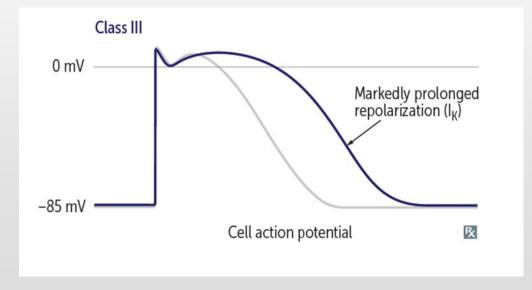

Prolong ERP

Three Major Players: Na⁺, Ca²⁺, K⁺

2020 AHA Guidelines for CPR and Emergency Cardiovascular Care

<u>Amiodarone or lidocaine</u> may be considered for VF/pVT that is unresponsive to defibrillation

Lidocaine


- ↓ Action potential duration
- Preferentially affects ischemic or depolarized Purkinje fibers and ventricular tissue

Lidocaine

Class	Class Ib antiarrhythmic agent
MOA	 Blocks initiation/conduction of nerve impulses by decreasing membrane's permeability to Na ions Increases electrical stimulation threshold of ventricle Inhibits depolarization
Dosing in VF/pVT	 1 - 1.5 mg/kg IVP Repeat: 0.5 - 0.75 mg/kg IVP Max dose: 3 mg/kg 2 - 4 mg/kg ET
Kinetics	 Metabolism: 90% via CYP1A2 and CYP3A4 Duration: 10 – 20 minutes
Adverse Events	 Less proarrhythmic effects compared to other class I antiarrhythmics Hypotension in patients with pre-existing heart failure Sedation, nausea, confusion, dizziness

Amiodarone

Amiodarone

Class	Class III antiarrhythmic agent		
MOA	 Inhibits ion flux through Na⁺, K⁺, Ca²⁺ channels Inhibits adrenergic stimulation (α- and β-blocking activities) Prolongs action potential and ERP in myocardial tissue 		
Dosing	 300 mg IVP/IO Repeat: 150 mg IVP/IO Max Dose in 24 hours: 2.2 g 		
Adverse Events	HypotensionBradycardiaQTc prolongation	Liver toxicityThyroid toxicity	
Kinetics	 Metabolism: CYP2C8 and CYP3A4 to active metabolite Half-life: 9 – 36 days (IV); 9 – 30 days for active metabolite 		
DDI	 P-gp inhibitor Inhibits 2C9, 2C19, 3A4, 2D6 		

Knowledge Check 3

What is the initial dose of lidocaine for shock refractory VF/pVT?

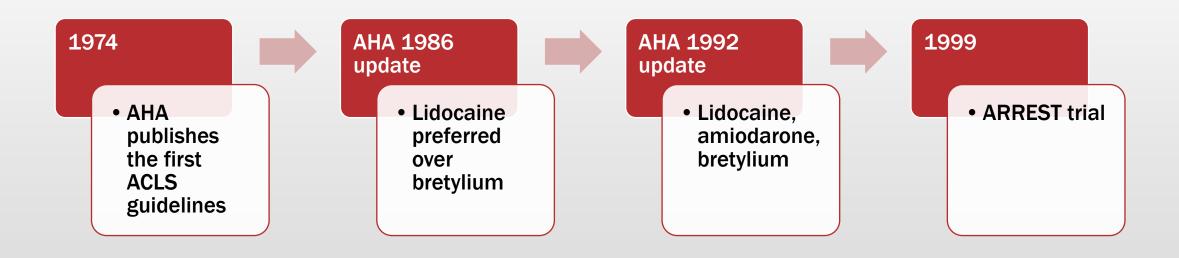
- A. 150 mg IVP
- B. 300 mg IVP
- C. 0.5 0.75 mg/kg IVP
- D. 1 1.5 mg/kg IVP

Knowledge Check 3

What is the initial dose of lidocaine for shock refractory VF/pVT?

- A. 150 mg IVP
- B. 300 mg IVP
- C. 0.5 0.75 mg/kg IVP
- D. 1 1.5 mg/kg IVP

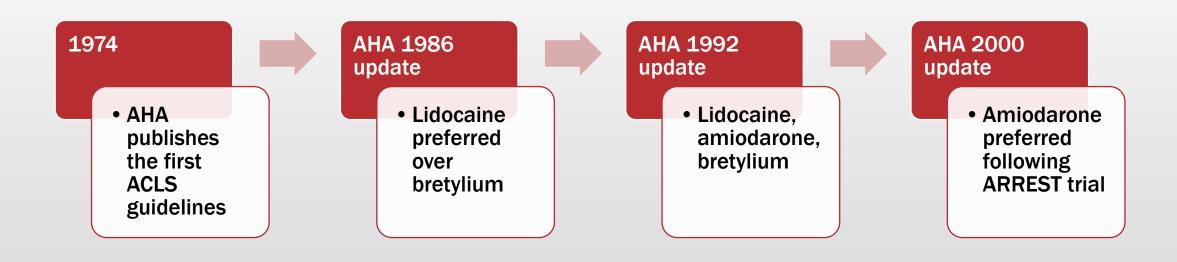
Lidocaine vs amiodarone in VF/pVT


Lidocaine

- Bristojet prefilled syringe
- Open the box
- Remove caps
- Twist together
- Administer

Amiodarone

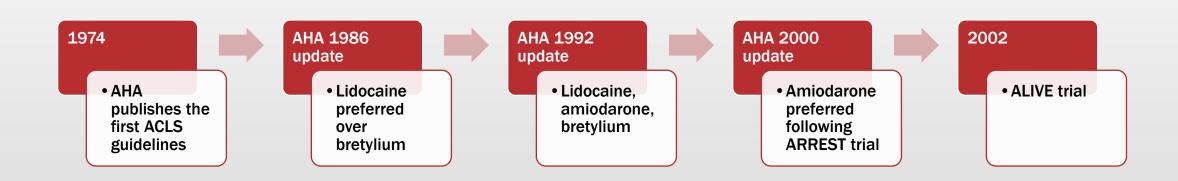
- Prepared using 2 vials of 150mg/3mL
- Bubbles may accumulate when drawing up


The Eras of Antiarrhythmics' in the ACLS Guidelines

Amiodarone for Resuscitation after Out-of-hospital Cardiac Arrest due to Ventricular Fibrillation (ARREST)

Population	Intervention	Outcome	Conclusion
OHCA due to VF/pVT refractory to ≥3 shocks	Amiodarone 300mg (n=246)	Primary: Hospital Admission 44% v 34%; p=0.03 Adjusted OR 1.6 (95% Cl 1.1 – 2.4; p=0.02)	 Amiodarone improves survival to hospital admission in shock-
Double-blind, Placebo-controlled, Randomized Control Trial	vs Placebo (n=258)	Secondary: Survival to discharge: 13.4% v 13.2%	 refractory VF. Survival to admission was 39% Survival to discharge
N=504		HOTN: 59% v 48% Bradycardia: 41% v 25%	was ~13%

The Eras of Antiarrhythmics' in the ACLS Guidelines



CLINICAL QUESTION:

Should amiodarone or lidocaine be the antiarrhythmic of choice for shock refractory ventricular fibrillation/ pulseless ventricular tachycardia?

The Eras of Antiarrhythmics' in the ACLS Guidelines

Amiodarone as compared with lidocaine for shockresistant ventricular fibrillation (ALIVE)

DORIAN ET AL. 2002

Objective

• To determine the efficacy of lidocaine compared to amiodarone for the treatment and prevention of OHCA due to VF

Study Design

- Investigator initiated, double-blind, randomized control trial
- 347 patients

ALIVE Inclusion and Exclusion

Inclusion

- Age >18
- EKG documented VF
- Resistant VF (≥3 shocks)
- ≥1 dose of Epinephrine + 4th shock
- Recurrent VF after successful initial defibrillation

Exclusion

- VF due to trauma
- Other cardiac rhythms that converted to VF

ALIVE Interventions

Amiodarone (n=180)

- 5 mg/kg in polysorbate-80 and 30 mL of D5W
- Repeat dose: 2.5 mg/kg

Lidocaine (n=167)

1.5 mg/kg (10 mg/mL)
Repeat dose: 1.5 mg/kg

ALIVE Outcomes

Primary

Survival to hospital admission

Secondary

- Survival to hospital discharge
- Adverse events

ALIVE Baseline Characteristics

Baseline Characteristics	Amiodarone (n=180)	Lidocaine (n=167)
Age, mean, yr	68	66
History of cardiac disease (%)	61%	59%
Witnessed arrest (%)	76%	78%
CPR by bystander (%)	26%	28%
VF as initial rhythm (%)	91%	93%
pVT as initial rhythm (%)	1%	2%
Supraventricular rhythm (%)	2%	1%
Time from dispa	tch to response/procedure:	
First shock, mean, min (SD)	8 ± 3	9 ± 4
Intubation, mean, min (SD)	11 ± 4	11 ± 4
Administration of study drug, mean, min (SD)	25 ± 8	24 ± 7

ALIVE Primary Outcomes

Primary Outcome	Amiodarone (n=180)	Lidocaine (n=167)	Unadjusted OR for survival (95% CI)	Adjusted OR for survival (95% CI)
Survival to hospital admission – N (%)	41 (22.8%)	20 (12%)	2.17 (1.21 - 3.83); p=0.009	2.49 (1.28 - 4.85); p=0.007

ALIVE Effect of Study Drug on Survival

Treatment factor	Unadjusted OR for survival (95% CI)	Adjusted OR for survival (95% Cl)
ROSC before drug administration	3.6 (1.7 – 7.3); p < 0.001	5.93 (2.46 - 14.26); p < 0.001
Time from dispatch to drug administration (per 1-min increase)	0.91 (0.86 – 0.96); p < 0.001	0.88 (0.83 – 0.93); p < 0.001
Treatment assignment (amiodarone vs lidocaine)	2.17 (1.21 – 3.83); p=0.009	2.49 (1.28 – 4.85); p=0.007

ALIVE Outcomes After Study Drug

Outcomes after study drug	Amiodarone (n=180)	Lidocaine (n=167)	P-value
Survival to hospital discharge – No. (%)	9 (5%)	5 (3%)	0.32
Treatment for bradycardia (atropine use) – No. (%)	43 (24%)	38 (23%)	>0.05
Treatment for hypotension (dopamine use) – No. (%)	13 (7%)	6 (4%)	>0.05

ALIVE Strengths

Strengths

- Short time from dispatch to first shock
- Found association between survival and time to drug administration
- Adjusted baseline characteristics to make groups evenly matched

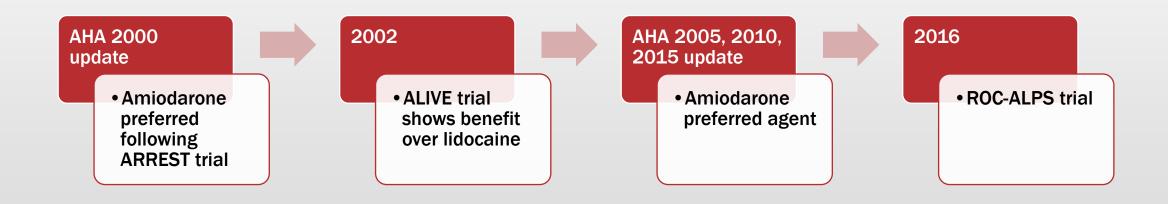
ALIVE Limitations

Limitations

- Survival to discharge < 5%
- Time to drug administration compared to ACLS algorithm
- Amiodarone weight-based dosing not consistent with the recommended 300 mg IVP in the guidelines
- Repeat lidocaine dose 1.5 mg/kg vs 0.5 0.75 mg/kg recommended in the guidelines
- No average number of doses administered recorded
- No outcomes on neurologic status
- Initial rhythm of pVT only in 3 patients

ALIVE Takeaways

Big loss for lidocaine


Survival to discharge < 5% (overall)

Time to drug administration ~24 minutes

Patients in amiodarone group were twice as likely to achieve ROSC prior to administration

Overall, study found association with survival and earlier drug administration

The Eras of Antiarrhythmics' in the ACLS Guidelines

Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest (ROC-ALPS)

KUDENCHUK ET AL. 2016

Objective

 Compare effects of amiodarone, lidocaine, or placebo after OHCA due to VF/pVT on survival to hospital discharge

Study Design

- Multicenter, randomized, double-blind, placebocontrolled, pre-hospital trial
- 3026 patients

ROC-ALPS Inclusions and Exclusion

Inclusion

- Age > 18
- Shock-refractory VF/pVT
- At least one shock
- Vascular access (IV or IO)

Exclusion

- Already receiving openlabel IV lidocaine or amiodarone
- Known hypersensitivity to lidocaine or amiodarone
- Known advanced directive
- Protected populations

ROC-ALPS Interventions

Amiodarone

- 300 mg (150 mg/3mL syringe)
- Repeat 150 mg

Lidocaine

- 120 mg (60 mg/3mL syringe)
- Repeat 60 mg

Placebo

ROC-ALPS Outcomes

Primary Outcome

• Survival to hospital discharge (amiodarone vs placebo)

Secondary Outcome

• Favorable neurologic function at discharge (mRS \leq 3)

Mechanistic Outcomes

- ROSC at ED arrival
- Hospital admission

ROC-ALPS Baseline Characteristics

Baseline Characteristics	Amiodarone (n=974)	Lidocaine (n=993)	Placebo (n=1059)
Age, mean, yr	63.7	63.0	62.7
Cardiac arrest witnessed by EMS (%)	6.0%	4.6%	5.3%
Bystander-initiated shock (%)	6.9%	5.5%	5.8%
Bystander-initiated CPR (%)	61.4%	59.2%	60.2%
Time from initial call to EMS arrival, mean, min (SD)	5.8 ± 2.6	5.6 ± 2.4	5.8 ± 2.6
Time from initial call to first dose of trial drug in non-EMS witnessed arrest, min	19.3 ± 7.1	19.3 ± 7.6	19.3 ± 7.3
Time from cardiac arrest to first dose of trial drug in EMS witnessed arrest, min	11 .7 ± 5.8	12.1 ± 6.6	12.1 ± 6.6
Number of EMS shocks, median (IQR)	5 (3 - 7)	5 (3 - 7)	6 (4 - 9)
Number of shocks after first dose of trial drug, median (IQR)	2 (1 - 4)	2 (1 - 3)	3 (1 - 6)

N Engl J Med. 2016;374(18):1711-1722.

ROC-ALPS Outcomes: Amiodarone vs Placebo

Primary Outcome	Amiodarone (n=974)	Placebo (n=1059)	Absolute Risk Difference (95% CI)
Survival to discharge – N (%)	237 (24.4%)	222 (21.0%)	3.2 (-0.4 – 7.0); p=0.08

Secondary Outcome	Amiodarone (n=974)	Placebo (n=1059)	Absolute Risk Difference (95% Cl)
mRS ≤ 3 – N (%)	182 (18.8%)	175 (16.6%)	2.2 (-1.1 – 5.6); p=0.19
ROSC at ED arrival – N (%)	350 (35.9%)	366 (34.6%)	1.4 (-2.8 – 5.5); p=0.52
Hospital admission – N (%)	445 (45.7%)	420 (39.7%)	6.0 (1.7 - 10.3); p=0.01

ROC-ALPS Outcomes: Lidocaine vs Placebo

Primary Outcome	Lidocaine (n=993)	Placebo (n=1059)	Absolute Risk Difference (95% CI)
Survival to discharge – N (%)	233 (23.7%)	222 (21.0%)	2.6 (-1.0 - 6.3); p=0.16

Secondary Outcome	Lidocaine (n=993)	Placebo (n=1059)	Absolute Risk Difference (95% CI)
mRS ≤ 3 – N (%)	172 (17.5%)	175 (16.6%)	0.9 (-2.4 – 4.2); p=0.59
ROSC at ED arrival – N (%)	396 (39.9%)	366 (34.6%)	5.4 (1.2 – 9.5); p=0.01
Hospital admission – N (%)	467 (47.0%)	420 (39.7%)	7.4 (3.1 – 11.6); p<0.001

ROC-ALPS Outcomes: Amiodarone vs Lidocaine

Primary Outcome	Amiodarone (n=974)	Lidocaine (n=993)	Absolute Risk Difference (95% CI)
Survival to discharge – N (%)	237 (24.4%)	233 (23.7%)	0.7 (-3.2 – 4.7); p=0.70

Secondary Outcome	Amiodarone (n=974)	Lidocaine (n=993)	Absolute Risk Difference (95% CI)
mRS ≤ 3 – N (%)	182 (18.8%)	172 (17.5%)	1.3 (-2.1 – 4.8); p=0.44
ROSC at ED arrival – N (%)	350 (35.9%)	396 (39.9%)	-4.0 (-8.3 – 0.3); p=0.07
Hospital Admission – N (%)	445 (45.7%)	467 (47.0%)	-1.3 (-5.7 – 3.1); p=0.55

ROC-ALPS Adverse Events

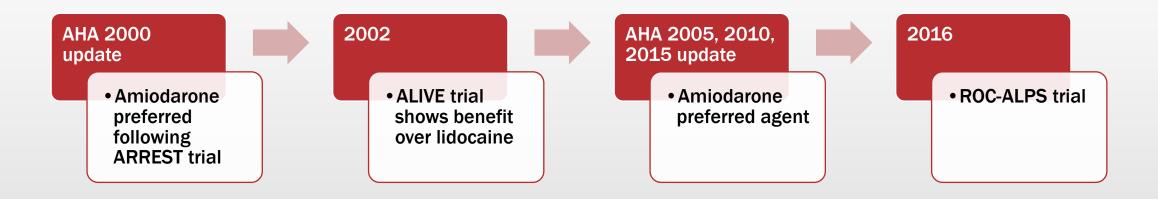
Event	Amiodarone (n=974)	Lidocaine (n=993)	Placebo (n=1059)	P-value
Clinical seizure activity within 24 hours – N (%)	31 (3.2%)	51 (5.1%)	39 (3.7%)	0.07
Temporary cardiac pacing within 24 hours – N (%)	48 (4.9%)	32 (3.2%)	29 (2.7%)	0.02

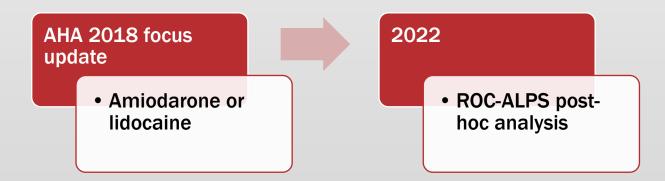
ROC-ALPS Strengths

Strengths

- Double-blind, randomized trial
- Large sample size
- Equal baseline characteristics and evenly matched groups
- 99.5% patient follow-up
- No differences in pre-shock pauses, compression rate/depth, CPR fraction between groups

ROC-ALPS Limitations


Limitations


- Utilized non-weight-based dosing for lidocaine
- Post-cardiac arrest care not standardized between hospitals
- Enrolled patients at randomization who (at baseline) had little to no chance of survival
- Selection bias

ROC-ALPS Takeaways

No difference in hospital discharge or favorable neurologic outcome	Lidocaine associated with higher rates of ROSC at ED arrival	Lidocaine and amiodarone associated with higher rates of hospital admission
Patients given either drug required fewer shocks	Amiodarone required more cardiac pacing	Utilized pre-made syringes

The Eras of Antiarrhythmics' in the ACLS Guidelines

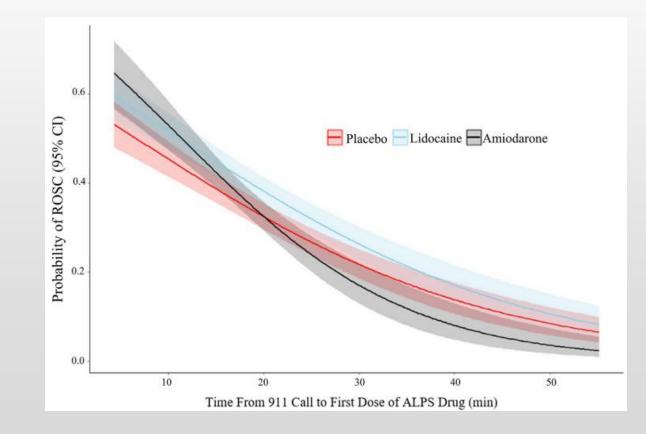
Effect of Time to Treatment With Antiarrhythmic Drugs on Return of Spontaneous **Circulation in Shock-Refractory Out-of-Hospital Cardiac Arrest**

RAHIMI ET AL. 2022

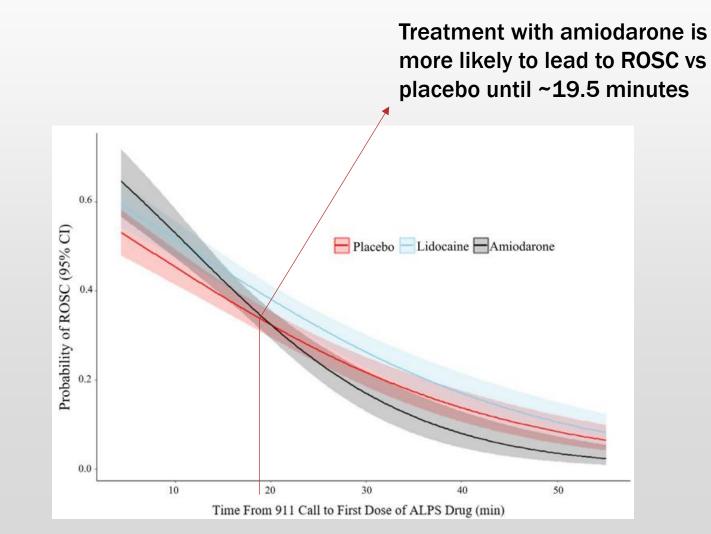
ROC-ALPS Post-hoc

Primary Objective

• Explore the relationship between time to antiarrhythmic treatment and ROSC

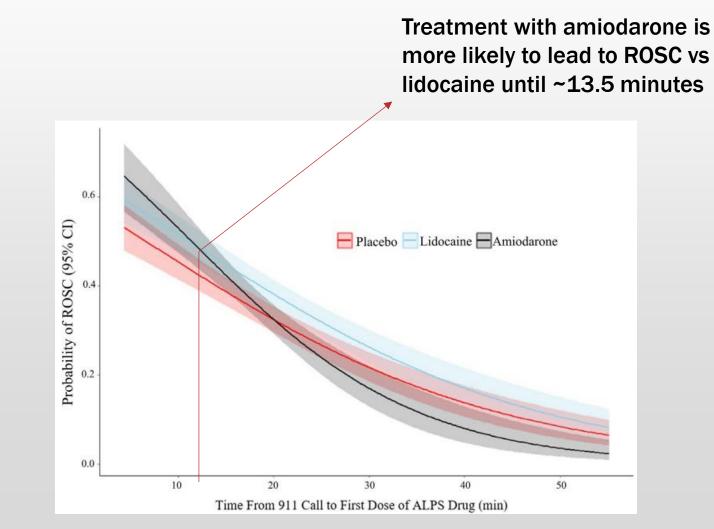

Study Design

- Individual patient-level secondary analysis in the per-protocol population
- 2994 patients with known drug administration


Primary Outcome

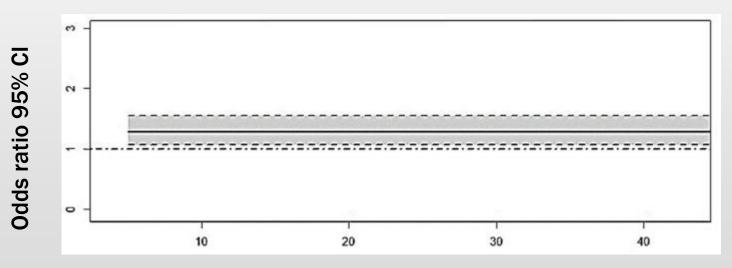
ROSC at hospital arrival

ROC-ALPS Post-hoc: Primary Outcome



Primary Outcome: Amiodarone vs Placebo

J Am Heart Assoc. 2022;11(6):e023958..

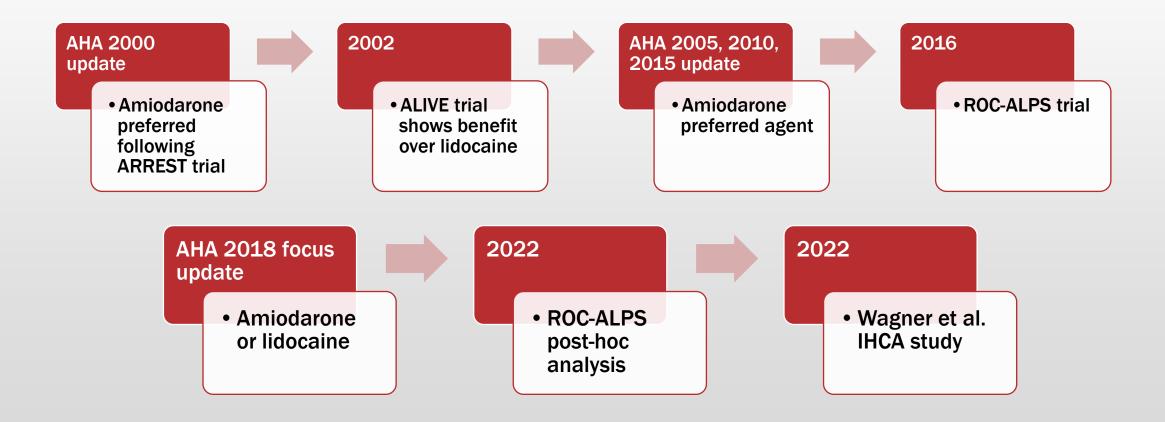

Primary Outcome: Amiodarone vs Lidocaine

J Am Heart Assoc. 2022;11(6):e023958..

Primary Outcome: Lidocaine vs Placebo

Time	OR of ROSC at hospital arrival
All time points	1.29 (1.07 - 1.59); p=0.004

Times from 911 call to first dose of ALPS drug (min)


ROC-ALPS Post-hoc Takeaways

Amiodarone appears superior to lidocaine if given early (< 13.5 minutes) Lidocaine appears superior to amiodarone if given later (>13.5 minutes) Placebo appears superior to amiodarone if given later (>19.5 minutes)

Early administration of antiarrhythmics appears more beneficial compared to later

Early administration may be a marker for early CPR/defibrillation

The Eras of Antiarrhythmics' in the ACLS Guidelines

Comparative Effectiveness of Amiodarone and **Lidocaine for the Treatment** of In-Hospital Cardiac Arrest

WAGNER ET AL. 2022

Wagner et al.

Objective

• Compare outcomes of patients with IHCA due to VF/pVT treated with amiodarone or lidocaine

Study Design

- Retrospective cohort study
- Data from GWTG-R registry
- 14,630 Patients

Wagner et al. Inclusion and Exclusion

Inclusion

- Age > 18
- IHCA secondary to VF/pVT
- Received defibrillation
- Received either amiodarone or lidocaine

Exclusion

- Arrest began in outpatient or ambulatory care setting
- Did not receive defibrillation
- Did not receive amiodarone or lidocaine
- Received both antiarrhythmics
- Missing data on treatment
- Incomplete documentation

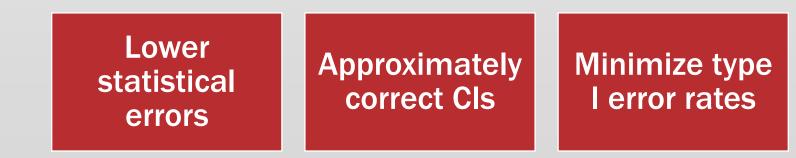
Wagner et al. Interventions

Amiodarone (n=10,058)

Lidocaine (n=4572)

Wagner et al. Outcomes

Primary Outcome


• ROSC

Secondary Outcome

- 24-hour survival post arrest
- Survival to hospital discharge
- Favorable neurologic outcome

Wagner et al. Statistics

- Utilized propensity score methods (PSMs) and multivariable logistic regression to balance covariates between groups
- Average marginal effect (AME) calculated to predict the probability of an outcome with consistent covariates
 - Often referred to as the average treatment effect (ATE)
- Risk differences were estimated using inverse probability of treatment weighting (IPTW)
 - Potential benefits of IPTW for PSMs:

Wagner et al. Baseline Characteristics

Baseline Characteristics	Amiodarone (n=10058)	Lidocaine (n=4572)
Age, mean, yr (SD)	65.2 ± 14.7	65.7 ± 14.3
Diabetes (%)	30.8%	27.1%
Renal insufficiency or dialysis (%)	29.0%	22.9%
Event location: Adult ICU (%)	50.6%	43.2%
Event location: ED (%)	14.0%	19.6%
Event witnessed (yes) (%)	87.5%	87.7%
Continuous vasopressor (%)	32.9%	26.2%
Time to defibrillation (min)	2.4	2.2

Wagner et al. Primary Outcome

Primary Outcome	Unadjusted Outcome with Amiodarone (n=10058)	Unadjusted Outcome with Lidocaine (n=4572)	Absolute risk difference (95% CI)
ROSC (%)	76.6%	77.3%	0.7 (-1.2 – 2.7); p=0.47

Primary Outcome	Adjusted Outcome with Amiodarone (n=10058)	Adjusted Outcome with Lidocaine (n=4572)	Absolute Risk Difference	Average Marginal Effect (95% CI)
ROSC (%)	76.1%	79.0%	1.15; p = 0.01	2.3% (0.5 - 4.2)

Wagner et al. Adjusted Secondary Outcomes

Secondary Outcomes	Adjusted risk with Amiodarone (n=10058)	Adjusted risk with Lidocaine (n=4572)	Adjusted Odds Ratio	Average Marginal Effect (95% CI)
24-hour survival	59.9%	62.5%	1.16; p=0.004	3.0% (0.9 - 5.1)
Survival to discharge	43.0%	46.3%	1.19; p<0.001	3.3% (1.5 - 5.2)
Favorable neurologic outcome at hospital discharge	39.4%	42.5%	1.18; p<0.001	3.1% (1.3 - 4.9)

Wagner et al. Strengths

Strengths

- Large sample size
- Adjusted results due to confounders
- Unadjusted results favor lidocaine
- Benefit in neurologic outcomes
- Discuss potential mechanisms that favor use of lidocaine

Wagner et al. Limitations

Limitations

- Observational, retrospective cohort analysis
- 70% of sample received amiodarone
- Data limited to hospitals who participate in the GWTG-R registry
- Limited data on: reasons for admission, **etiology of IHCA**, **duration of CPR**, hemodynamic parameters at ROSC, amount of drug administered
- No data on administration of either treatment
- Favorable neurologic outcome based on cerebral performance (more of an estimation versus mRS)
- Complex statistics

Wagner et al. Takeaways

Only study looking at IHCA	Utilized ROSC as a primary outcome	Adjusted results favored lidocaine in achieving ROSC, 24-hour survival, survival to discharge, and neurologic survival
Only study to find that lidocaine is associated with improved survival vs amiodarone	Only study finding improvement in neurologic status (though based on cerebral performance)	Survival rate >40%

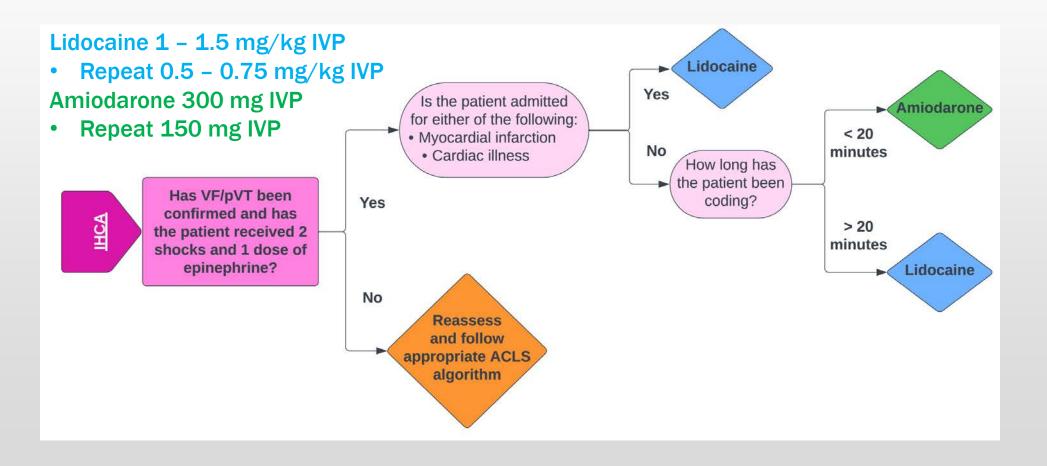
	AL	ALIVE		ROC ALPS		Wagner et al.	
Antiarrhythmic	Amiodarone	Lidocaine	Amiodarone	Lidocaine	Amiodarone	Lidocaine	
Survival to hospital admission*	\checkmark	×		•	×	\checkmark	
Survival to discharge**	n/a	n/a	-		×	\checkmark	
ROSC***	n/a	n/a	\checkmark	\checkmark	×	\checkmark	
Favorable neurologic outcome	n/a	n/a	-	•	×	\checkmark	

*ALIVE Primary Outcome

****ROC-ALPS** Primary Outcome


***Wagner et al. Primary Outcome

CLINICAL QUESTION:


Should amiodarone or lidocaine be the antiarrhythmic of choice for shock refractory ventricular fibrillation/ pulseless ventricular tachycardia?

OHCA Algorithm

IHCA Algorithm

Feel the Rhythm! Feel the Rhyme! Give it up, it's Lidocaine's Time:

Lidocaine vs Amiodarone for Shock Refractory VF/pVT

Markus Reedy, PharmD. PGY 2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy

Resources for Pharmacists

2020 AHA Guidelines for ACLS – Executive Summary

 Merchant RM, Topjian AA, Panchal AR, et al. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16_suppl_2):S337-S357. doi:10.1161/CIR.000000000000918

2020 AHA Guidelines for ACLS – Basics of Emergency Cardiovascular Care

 Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16_suppl_2):S366-S468. doi:10.1161/CIR.0000000000000916

Find an ACLS course near you!

 Advanced cardiovascular life support (ACLS). cpr.heart.org. May 25, 2023. Accessed November 10, 2023. https://cpr.heart.org/en/cpr-courses-and-kits/healthcareprofessional/acls.

What is the initial dose of amiodarone for shock refractory ventricular fibrillation (VF)/pulseless ventricular tachycardia (pVT)?

- A. 150 mg IVP
- B. 300 mg IVP
- C. 1 1.5 mg/kg IVP
- D. 150 mg IV bolus over 10 minutes

What is the initial dose of amiodarone for shock refractory ventricular fibrillation (VF)/pulseless ventricular tachycardia (pVT)?

A. 150 mg IVP

- B. 300 mg IVP
- C. 1 1.5 mg/kg IVP
- D. 150 mg IV bolus over 10 minutes

You are the pharmacist who responded to a CODE BLUE. CPR is in progress. Defibrillator/monitor pads are attached which shows the rhythm above, and the physician states the patient is in ventricular fibrillation. What is the correct treatment algorithm?

- A. Shock, CPR for 2 minutes, recheck rhythm, shock, CPR for 2 minutes and epinephrine, recheck rhythm, shock, CPR and lidocaine
- B. Shock, CPR for 2 minutes, recheck rhythm, shock, CPR for 2 minutes and amiodarone, recheck rhythm, shock, CPR and repeat amiodarone
- C. CPR for 2 minutes, epinephrine every 3 5 minutes (every other pulse check)
- D. CPR for 2 minutes, epinephrine every 3 5 minutes (every other pulse check), lidocaine after third pulse check

You are the pharmacist who responded to a CODE BLUE. CPR is in progress. Defibrillator/monitor pads are attached which shows the rhythm above, and the physician states the patient is in ventricular fibrillation. What is the correct treatment algorithm?

- A. Shock, CPR for 2 minutes, recheck rhythm, shock, CPR for 2 minutes and epinephrine, recheck rhythm, shock, CPR and lidocaine
- B. Shock, CPR for 2 minutes, recheck rhythm, shock, CPR for 2 minutes and amiodarone, recheck rhythm, shock, CPR and repeat amiodarone
- C. CPR for 2 minutes, epinephrine every 3 5 minutes (every other pulse check)
- D. CPR for 2 minutes, epinephrine every 3 5 minutes (every other pulse check), lidocaine after third pulse check

Regarding the primary literature reviewed in this presentation, the study by Wagner et al found higher rates of ROSC with lidocaine and amiodarone compared to the ROC-ALPS trial. What major difference between the two studies could have led to higher rates of ROSC in Wagner et al study?

- A. Wagner et al compared lidocaine to amiodarone for OHCA which has a higher rate of survival compared to IHCA
- B. Wagner et al compared lidocaine to amiodarone for IHCA which has a higher rate of survival compared to OHCA
- C. ROC ALPS utilized the GWTG-R data base which is limited by only hospitals participating in the registry
- D. ROC ALPS utilized PSM to adjust for baseline differences between groups which could negatively affect outcome results

Regarding the primary literature reviewed in this presentation, the study by Wagner et al found higher rates of ROSC with lidocaine and amiodarone compared to the ROC-ALPS trial. What major difference between the two studies could have led to higher rates of ROSC in Wagner et al study?

- A. Wagner et al compared lidocaine to amiodarone for OHCA which has a higher rate of survival compared to IHCA
- B. Wagner et al compared lidocaine to amiodarone for IHCA which has a higher rate of survival compared to OHCA
- C. ROC ALPS utilized the GWTG-R data base which is limited by only hospitals participating in the registry
- D. ROC ALPS utilized PSM to adjust for baseline differences between groups which could negatively affect outcome results

TS is a 32-year-old female with an extensive cardiovascular history. She is currently admitted to the CVICU for concerns of an NSTEMI with plans for a staged PCI tomorrow. A CODE BLUE is called, and you are the pharmacist who responds. CPR is in progress, defibrillator/monitor pads are attached, first rhythm check shows VF, and a shock is deployed followed by epinephrine 1mg. Based on the algorithm, which medication do you recommend to the team? (TS weighs 54kg and height is 69 inches)

- A. Amiodarone 150 mg IVP
- B. Amiodarone 300 mg IVP
- C. Lidocaine 40 mg IVP
- D. Lidocaine 80 mg IVP

TS is a 32-year-old female with an extensive cardiovascular history. She is currently admitted to the CVICU for concerns of an NSTEMI with plans for a staged PCI tomorrow. A CODE BLUE is called, and you are the pharmacist who responds. CPR is in progress, defibrillator/monitor pads are attached, first rhythm check shows VF, and a shock is deployed followed by epinephrine 1mg. Based on the algorithm, which medication do you recommend to the team? (TS weighs 54kg and height is 69 inches)

- A. Amiodarone 150 mg IVP
- B. Amiodarone 300 mg IVP
- C. Lidocaine 40 mg IVP
- D. Lidocaine 80 mg IVP

Special Thanks

Faculty Mentor

Critique

Sarah Berman, PharmD, BCCCP

Lauren Lozano, PharmD, BCCCP

Claiming Co-curricular Credit

Use this QR code to claim co-curricular credit

Feel the Rhythm! Feel the Rhyme! Give it up, it's Lidocaine's Time:

Lidocaine vs Amiodarone for Shock Refractory VF/pVT

Markus Reedy, PharmD. PGY 2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy

