
#### Venous Thromboembolism Prophylaxis in Hospitalized Obese Patients: Dose it Matter?



Taylor M. Benavides, Pharm.D. PGY-2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy San Antonio, TX November 20, 2020

#### Disclosure

I have no actual or potential conflict of interest in relation to this presentation.

# Learning Objectives

#### Pharmacists:

- Assess risk factors for venous thromboembolism (VTE) to determine if VTE prophylaxis is indicated in hospitalized patients
- List dosing of anticoagulants for VTE prophylaxis in hospitalized obese and non-obese patients
- Evaluate dosing and frequency of anticoagulants for VTE prophylaxis in hospitalized obese patients

#### **Pharmacy Technicians:**

- Identify risk factors for which venous thromboembolism (VTE) prophylaxis is indicated in hospitalized patients
- List anticoagulants that are used for VTE prophylaxis in hospitalized patients
- Recall dosing and frequency of anticoagulants for VTE prophylaxis in hospitalized obese patients

## Epidemiology

- VTE occurs in ~1% of hospitalized patients every year (15-20% without prophylaxis)
   2008: Call to Action released by Surgeon
- 2008: Call to Action released by Surgeol General to reduce nosocomial VTE
- VTE prophylaxis: common core measure by The Joint Commission

#### Virchow's Triad

Hypercoagulability

Thrombosis



**Venous stasis** 

Cancers (Basel). 2018 Oct 11;10(10). J Thromb Haemost. 2003 Dec;1(12):2463-5. Clin Med Insights Oncol. 2014 Dec 4;8:129-37. J Transl Med. 2011 Oct 20;9:179.

## VTE Risk Assessment Methods

- Padua Risk Score
- Geneva risk score (see appendix)
- IMPROVE VTE score (see appendix)

#### Padua Score

| Active cancer, previous VTE, reduced mobility,<br>thromboembolic condition                                                                                                 | +3 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Trauma or surgery < 1 mo.                                                                                                                                                  | +2 |
| Age ≥ 70 years, heart or respiratory failure, acute MI or<br>stroke, acute infection or rheumatologic disorder, BMI ><br>30 kg/m <sup>2</sup> , ongoing hormonal treatment | +1 |

| Padua VTE Risk Score Interpretation |                              |  |
|-------------------------------------|------------------------------|--|
| Total Risk Score                    | Interpretation               |  |
| < 4 points                          | Prophylaxis is NOT indicated |  |
| ≥ 4 points                          | Prophylaxis is indicated     |  |

## VTE Chemoprophylaxis: History

- Chemoprophylaxis: implemented in the 1970s
- Absolute risk reduction (ARR) of VTE with chemoprophylaxis vs. no prophylaxis: up to 18%

| Samama, et al. <i>N Engl J Med</i> 1999; 341:793-800. (MEDENOX). |              |            |                                |
|------------------------------------------------------------------|--------------|------------|--------------------------------|
| Population                                                       | Intervention | Comparator | Outcomes<br>(40mg vs. placebo) |
| Non-ICU                                                          | Enoxaparin   | Placebo    | VTE on day 1-14: 5.5%          |
| patients with                                                    | 20mg (n=287) | (n=288)    | vs. 14.9% (p=<0.001)           |
| expected                                                         | or 40mg      |            |                                |
| LOS ≥ 6                                                          | (n=291)      |            | Hemorrhage (major +            |
| days                                                             |              |            | minor): 8.6% vs. 12.6%         |
|                                                                  |              |            | (NS)                           |

#### VTE Chemoprophylaxis: Dosing and Monitoring

| Standard Dosing for VTE Prophylaxis |                        |  |
|-------------------------------------|------------------------|--|
| Enoxaparin                          | Heparin                |  |
| 40mg SQ q24h                        | 5000 units q12h or q8h |  |

| Enoxaparin Goal Anti-Xa Levels |                             |  |
|--------------------------------|-----------------------------|--|
| Prophylaxis                    | Treatment                   |  |
| 0.2-0.5 IU/mL                  | 0.5-1.0 IU/mL (q12h dosing) |  |
|                                | 1.0-2.0 IU/mL (q24h dosing) |  |

## Review Question #1

Which of the following is a VTE risk assessment tool to evaluate VTE risk in hospitalized patients?

- A. HAS-BLED score
- B. Padua score
- C. MELD score
- D. CHA<sub>2</sub>DS<sub>2</sub>-VASc score

### Review Question #1

Which of the following is a VTE risk assessment tool to evaluate VTE risk in hospitalized patients?

- A. HAS-BLED score
- B. Padua score
- C. MELD score
- D. CHA<sub>2</sub>DS<sub>2</sub>-VASc score

# Obesity

- The proportion in the U.S. is steadily increasing
- 6-fold increased risk for VTE
- Pharmacokinetic changes: Increased Vd, Reduced tissue perfusion
- Enoxaparin and heparin poorly distribute into adipose tissue
  - As little as 0.7 mg/kg to achieve therapeutic anti-Xa levels

## Review Question #2

Which of the following characteristics about obesity are true?

- A. Decreased risk for VTE
- B. Decreased volume of distribution
- C. Increased blood flow into adipose tissue
- D. Poor distribution of heparin into adipose tissue

## Review Question #2

Which of the following characteristics about obesity are true?

- A. Decreased risk for VTE
- B. Decreased volume of distribution
- C. Increased blood flow into adipose tissue
- D. Poor distribution of heparin into adipose tissue

## Controversy

- Studies that assessed VTE prophylaxis dosing in obese patients investigated a plethora of doses and demonstrated conflicting results
- No consensus on dosing recommendations, especially in obese patients

## Controversy

| 2018 ASH Guidelines                                                                                                                                                                                                                                                                                             | 2012 Chest Guidelines                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><u>VTE Prophylaxis</u><br/><u>Recommendations</u></li> <li>LMWH preferred over UFH</li> <li>LMWH preferred over DOACs</li> <li><u>Research Priorities Identified</u></li> <li>Determining optimal dosing of<br/>chemoprophylaxis</li> <li>Should dosing be increased in<br/>obese patients?</li> </ul> | <u>VTE Prophylaxis</u><br><u>Recommendations</u><br>– LMWH preferred over UFH<br>– Heparin BID preferred over TID<br>– No discussion of dosing in<br>obese patients |

## **Clinical Controversy**

What is the most appropriate dosing of anticoagulants for VTE prophylaxis in hospitalized obese patients?

### **Clinical considerations**

- Prophylaxis dosing: syringe size increments (i.e., no wasting)
- Pharmacokinetic changes in obesity

Beall J, et al.

#### Efficacy and safety of high-dose subcutaneous unfractionated heparin prophylaxis for the prevention of venous thromboembolism in obese hospitalized patients. Hosp Pharm. 2016;51(5):376-381.

#### Beall, et al. Study Design

- Retrospective, single-center, cohort study
- Study Groups:
  - Conventional-Dose: Heparin 5000 units SQ three times daily
  - High-Dose: Heparin 7500 units SQ three times daily

## **Inclusion Criteria**

| Inclusion Criteria                                                                                             | Exclusion Criteria                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Obese patients, identified by ICD-9 codes</li> <li>3 or more doses of heparin administered</li> </ul> | <ul> <li>Age &lt; 18 years old</li> <li>VTE or bleeding on admission</li> <li>Receipt of enoxaparin during<br/>hospitalization</li> <li>Receipt of therapeutic<br/>anticoagulation on admission or<br/>during hospitalization</li> <li>Pregnancy or peripartum</li> <li>Imprisonment</li> <li>Paraplegia</li> <li>Major surgery</li> <li>Inpatient rehabilitation</li> <li>History of heparin-induced<br/>thrombocytopenia</li> </ul> |

### Outcomes

Primary outcomes identified by ICD-9 codes:

- Nosocomial VTE—No VTE on admission or within 30 days of previous admission
- Bleeding— bleeding not present at the time of admission and occurring after 24h of UFH
- Major bleeding—per ISTH definitions
   (See appendix

## **Statistical Analysis**

- Unpaired Student's t test: continuous, parametric variables
- Chi-square test: categorical variables
- Mann-Whitney U test: nonparametric data
- Alpha significance: < 0.05 for all statistical tests</li>

#### **Baseline Characteristics**

| Patient<br>Characteristics | Conventional-Dose<br>N=2182 | High-Dose<br>N=196 | p Value |
|----------------------------|-----------------------------|--------------------|---------|
| Age (yrs)–mean(SD)         | 58 (14.3)                   | 54 (13.3)          | <0.0001 |
| Female                     | 61.8%                       | 46.9%              | <0.0001 |
| LOS—median (range)         | 4 (1—188)                   | 7 (1—136)          | <0.0001 |
| CKD                        | 31.7%                       | 41.8%              | 0.004   |
| ICU Admission              | 17.3%                       | 43.4%              | <0.0001 |
| Active Cancer              | 5.7%                        | 2%                 | 0.03    |
| Respiratory failure        | 13.5%                       | 48.5%              | <0.0001 |
| History of VTE             | 3.5%                        | 3.6%               | 0.98    |

#### Outcomes

| Outcomes       | Conventional-Dose<br>N=2182 | High-Dose<br>N=196 | P Value |
|----------------|-----------------------------|--------------------|---------|
| Nosocomial VTE | 5 (0.23%)                   | 2 (1.02%)          | 0.05    |
| DVT            | 3                           | 2                  |         |
| PE             | 2                           | 0                  |         |
| Bleeding       | 2 (0.09%)                   | 0 (0)              | 0.67    |
|                |                             |                    |         |

## Critique

Author's Conclusion: "This study failed to demonstrate a statistically significant reduction in the rate of nosocomial VTE in obese patients who received high-dose heparin thromboprophylaxis."

| Strengths                                                                                                                                                                                                                        | Limitations                                                                                                                                                                      | Other            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <ul> <li>Relatively large sample size</li> <li>Appropriate definitions for<br/>outcomes</li> <li>Appropriate<br/>inclusion/exclusion criteria</li> <li>Analyzed appropriate<br/>comorbidities and<br/>characteristics</li> </ul> | <ul> <li>Retrospective design</li> <li>Outcomes identified by<br/>ICD-9 codes</li> <li>Differences in baseline<br/>characteristics</li> <li>Difference in sample size</li> </ul> | Low rates of VTE |

#### Beal, et al. Take Home Points

- High dose heparin neither decreased risk of VTE nor increased risk of bleeding compared to conventional dosing
- Limited by differences in baseline characteristics, particularly LOS

#### Joy M, et al. Safety and efficacy of high-dose unfractionated heparin for prevention of venous thromboembolism in overweight and obese patients. Pharmacotherapy. 2016;36(7):740-748.

# Study Design

- Single-center, retrospective observational cohort study
- Study Groups:
  - Low-Dose (LD): Heparin 5000 units SQ every 8 hours
  - High-Dose (HD): Heparin 7500 units SQ every 8 hours

## Joy, et al.

| Inclusion Criteria                                                                                                                    | Exclusion Criteria                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Age ≥ 18 years old</li> <li>Weight &gt; 100 kg</li> <li>Heparin prophylaxis at above doses during hospitalization</li> </ul> | <ul> <li>LOS &lt;48 hours</li> <li>Patients who were admitted with VTE</li> <li>Patients who required anticoagulation</li> <li>History of or diagnosed with atrial fibrillation during their hospitalization</li> <li>Received enoxaparin for VTE prophylaxis at any time during hospitalization</li> </ul> |

### Outcomes

- Primary outcome: Confirmed VTE
  - DVT diagnosed by LE US
  - PE diagnosed by CT chest
- Secondary Outcomes:
  - Major and minor bleeding (ISTH definitions)
  - Mortality

## **Statistical Analysis**

#### – To meet power:

- Effect size of 9.3% in the high-dose group
- Effect size of 5.7% in the low-dose group
- 1788 patients included
- Chi-squared test: categorical variables an
- Student t test: continuous variables
- Multivariable logistic regression model: To identify risk factors for VTE occurrence
- 2-tailed test of statistical significance: p<0.05</li>

#### **Patient Characteristics**

| Patient Characteristics  | BMI 25–29.9 |         | BMI 30-34.9 |         | BMI 35-39.9 |         | BMI ≥ 40        |         |
|--------------------------|-------------|---------|-------------|---------|-------------|---------|-----------------|---------|
|                          | HD          | LD      | HD          | LD      | HD          | LD      | HD              | LD      |
|                          | (n=23)      | (n=41)  | (n=144)     | (n=123) | (N=152)     | (n=171) | (n=432)         | (n=239) |
| Weight—mean (SD)         | 106±6       | 102±11  | 109±7       | 106±7   | 117±13      | 114±11  | 147 <u>+</u> 31 | 135±25  |
| BMI—mean (SD)            | 29±0.9      | 29±1.3  | 33±1.4      | 33±1.4  | 38±1.3      | 37±1.4  | 51±11           | 48±8    |
| Major surgery            | 22%         | 20%     | 33%         | 18%     | 16%         | 30%     | 15%             | 37%     |
| ICU upon admission—      | 61%         | 27%     | 56%         | 36%     | 49%         | 28%     | 40%             | 13%     |
| %                        |             |         |             |         |             |         |                 |         |
| PMH—%                    |             |         |             |         |             |         |                 |         |
| VTE                      | 4%          | 7%      | 0.7%        | 2%      | 2%          | 1%      | 4%              | 4%      |
| Cancer                   | 9%          | 10%     | 8%          | 3%      | 0.7%        | 1%      | 6%              | 7%      |
| Heart Failure            | 17%         | 10%     | 8%          | 6%      | 8%          | 14%     | 19%             | 9%      |
| LOS—median (IQR)         | 7 (4-9)     | 3 (2-7) | 5 (3-10)    | 4 (2-8) | 6 (3-12)    | 3 (2-6) | 5 (3-11)        | 3 (2-6) |
| Total days of heparin    | 5 (3-9)     | 3 (2-6) | 5 (3-8)     | 3 (2-6) | 5 (3-9)     | 3 (3-5) | 5 (3-10)        | 3 (2-5) |
| received—median<br>(IQR) |             |         |             |         |             |         |                 |         |

#### Outcomes

| Outcomes                              | High-Dose<br>(N=751) | Low-Dose<br>(N=584) | P Value                   |
|---------------------------------------|----------------------|---------------------|---------------------------|
| VTE                                   | 3%                   | 1.5%                | 0.14                      |
| DVT                                   | 2.3%                 | 1.4%                | 0.43                      |
| PE                                    | 0.9%                 | 0.2%                | 0.08                      |
| Bleeding—all patients                 |                      |                     |                           |
| ≥ 2-g/dl Hgb drop in 24-hr period     | 10%                  | 7%                  | <0.01                     |
| ≥ 2-g/dl Hgb drop from admission      | 27%                  | 18%                 | 0.09                      |
| ≥ 2 units of pRBCs transfused         | 11%                  | 8%                  | 0.04                      |
| Bleeding—floor patients               |                      |                     |                           |
| ≥ 2-g/dl Hgb drop in 24-hr period     | 9%                   | 5%                  | 0.07                      |
| ≥ 2-g/dI Hgb drop from admission      | 21%                  | 14%                 | 0.02                      |
| ≥ 2 units of pRBCs transfused         | 10%                  | 4%                  | <0.01                     |
| Bleeding—floor patients with BMI ≥ 40 |                      |                     |                           |
| ≥ 2-g/dl Hgb drop in 24-hr period     | 7%                   | 4%                  | 0.17                      |
| ≥ 2-g/dl Hgb drop from admission      | 20%                  | 10%                 | 0.01                      |
| ≥ 2 units of pRBCs transfused         | 10%                  | 3%                  | <b>0.02</b> <sub>34</sub> |

#### Outcomes

| Outcomes                      | BMI 25–29.9   |               | BMI 30-34.9   |                  | BMI 35–39.9    |               | BMI ≥ 40         |               |
|-------------------------------|---------------|---------------|---------------|------------------|----------------|---------------|------------------|---------------|
|                               | HD<br>(n=23)  | LD<br>(n=41)  | HD<br>(n=144) | LD<br>(n=123)    | HD<br>(N=152)  | LD<br>(n=171) | HD<br>(n=432)    | LD<br>(n=239) |
| VTE<br>DVT<br>PE              | 4%<br>4%<br>— | 2%<br>2%<br>— | 1%<br>—<br>1% | 1.5%<br>1%<br>1% | 4%<br>3%<br>2% | 1%<br>1%<br>— | 3%<br>3%<br>0.5% | 2%<br>2%<br>— |
| ≥ 2-g/dl Hgb<br>drop in 24 hr | 13%           | 5%            | 15%           | 11%              | 11%            | 8%            | 7%               | 8%            |
| ≥ 2-g/dl Hgb<br>drop from ad. | 17%           | 20%           | 31%           | 28%              | 30%            | 18%           | 25%              | 12%           |
| ≥ 2 units of<br>pRBCs trans.  | 9%            | 3%            | 13%           | 9%               | 19%            | 11%           | 11%              | 5%            |

## Critique

Author's Conclusion: ""This study failed to demonstrate a statistically significant reduction in the rate of nosocomial VTE in obese patients who received high-dose heparin thromboprophylaxis."

| Strengths                                                                                                                                                                                                                                     | Limitations                                                                                                                                                                      | Other                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Large sample size</li> <li>Appropriately defined<br/>outcomes</li> <li>Analyzed appropriate<br/>comorbidities and<br/>characteristics</li> <li>Stratification of<br/>outcomes by heparin<br/>dose and by BMI<br/>category</li> </ul> | <ul> <li>Retrospective design</li> <li>Failed to meet power</li> <li>LOS, ICU admission, and<br/>respiratory failure<br/>significantly higher in high-<br/>dose group</li> </ul> | <ul> <li>High rates of bleeding<br/>in both groups</li> <li>Larger numbers of VTE<br/>in BMI &lt; 40 group</li> <li>No assessment of<br/>symptomatic vs.<br/>incidental VTE</li> </ul> |

#### Joy et al. Take-Home Points

- High dose heparin was not associated with a decreased risk of VTE, but an increased risk of bleeding.
- Limited by the study's failure to meet power and differences in patient characteristics.

#### Borkgren-Okonek MJ, et al.

#### Enoxaparin thromboprophylaxis in gastric bypass patients: extended duration, dose stratification, and antifactor Xa activity. Surg Obes Relat Dis. 2008;4(5):625-631.

# Study Design

- Prospective, open-label trial
- Study Groups:
  - BMI ≤ 50 kg/m2 : enoxaparin 40mg every 12 hours
  - BMI > 50 kg/m2 : enoxaparin 60mg every 12 hours
- Enoxaparin started 12 hours after surgery, through hospitalization, and for 10 days after discharge
- Sequential compression devices were applied throughout hospitalization
- Ambulation initiated day of or day after surgery

# Borkgren-Okonek, et al.

| Inclusion Criteria                                                                                                                 | Exclusion Criteria                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>≥ 18 years old</li> <li>Bariatric surgery candidate and was to receive Roux-en-Y gastric bypass (RYGB) surgery</li> </ul> | <ul> <li>SCr &gt; 1.6 mg/dL</li> <li>Chronic warfarin use</li> <li>Contraindication to UFH or<br/>LMWH</li> <li>History of VTE or<br/>hypercoagulable state</li> </ul> |

### Outcomes

- Primary outcomes:
  - Efficacy: clinically evident VTE within 3 months post-surgery
    - Lower extremity US or CT Chest performed in symptomatic patients
  - Safety: major bleeding (ISTH definition)

#### **Baseline Characteristics**

| Patient Characteristics     | BMI ≤ 50<br>(n=124) | BMI > 50<br>(n=99) |
|-----------------------------|---------------------|--------------------|
| Age (years)—mean (SD)       | 44.7 (10.1)         | 44.3 (10.6)        |
| Weight, kg—mean (SD)        | 125.5 (18.5)        | 161.4 (27.3)       |
| BMI—mean (SD)               | 44.9 (3.7)          | 57.4 (6.4)         |
| Length of Stay (LOS)—median | 3.4 (1.5)           | 3.6 (1.9)          |
| Female—no.                  | 96                  | 72                 |
| VTE Risk Factors—no.        |                     |                    |
| DM                          | 36                  | 30                 |
| OSA                         | 53                  | 76                 |

### Outcomes

| Anti-Xa (IU/mL) | All<br>(n=206) | 40mg Q12H<br>(n=109) | 60mg Q12H<br>(n=97) |
|-----------------|----------------|----------------------|---------------------|
| <0.18           | 18%            | 21%                  | 14.4%               |
| 0.18—0.44       | 74.3%          | 79%                  | 69.1%               |
| >0.44           | 7.8%           |                      | 16.5%               |

- VTE: n=1
- Major bleeding: n=5 (n=4 in 40mg arm)

# Critique

Author's Conclusion: ""This BMI-stratified, extended enoxaparin dosing regimen provided well-tolerated, effective prophylaxis against venous thromboembolism in patients undergoing gastric bypass surgery."

| Strengths                                                                                             | Limitations                                                                                               | Other                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Large sample size</li> <li>Prospective design</li> <li>Analysis of anti-Xa levels</li> </ul> | <ul> <li>No mention of<br/>statistical analyses</li> <li>Small number of<br/>included patients</li> </ul> | <ul> <li>Short LOS</li> <li>Low rates of VTE</li> <li>Low rates of bleeding</li> <li>Small number of outcomes</li> <li>Use of SCDs throughout<br/>hospitalization</li> <li>Utilized thromboprophylaxis<br/>after discharge</li> <li>Only included patients<br/>undergoing gastric bypass<br/>surgery</li> </ul> |

# Take-Home Points

- Low rates of both VTE and bleeding associated with the use of BMI-stratified enoxaparin dosing
- Definitive BMI categories used for dosing strengthen the results of this study

### **Additional Heparin Studies**

| Study       | Study  | Population     | Interv.   | Sample | Baseline Char.                | Outcomes           |
|-------------|--------|----------------|-----------|--------|-------------------------------|--------------------|
|             | Des.   |                |           | Size   |                               |                    |
| Lee, et al. | Retro. | Critically ill | Heparin   | Non-   | Weight (kg)                   | VTE: 2.1% vs. 3%;  |
| 2017        | Cohort | non-obese      | 5000u BID | obese: | Non-obese:                    | P=0.11             |
|             | Study  | and obese      | or TID    | N=2813 | 78.57 ± 18.07                 |                    |
|             |        | patients       |           | Obese: | Obese:                        |                    |
|             |        |                |           | N=243  | 134.11 ± 31.55                |                    |
|             |        |                |           |        | 2                             |                    |
|             |        |                |           |        | <u>BMI (kg/m<sup>2</sup>)</u> |                    |
|             |        |                |           |        | Non-obese:                    |                    |
|             |        |                |           |        | 27.15 ± 5.15                  |                    |
|             |        |                |           |        | Obese:                        |                    |
|             |        |                |           |        | 47.75 ± 9.18                  |                    |
| Pantanwala, | Retro. | Hospital.      | Heparin   | Non-   | <u>BMI</u>                    | VTE: 0.6% vs.      |
| et al. 2018 | Cohort | obese and      | 5000u q8h | obese: | Avg. Obese: 37 ± 8            | 0.7%; P=0.7        |
|             | Study  | non-obese      |           | n=3437 | Non-obes.: 24 ± 4             | Intracranial       |
|             |        | patients       |           | Obese: |                               | bleeding: 0.1% vs. |
|             |        |                |           | n=1673 |                               | 0.2%; P=0.34       |
|             |        |                |           |        |                               | GI bleeding: 0.4%  |
|             |        |                |           |        |                               | vs. 0.4%; P>0.99   |

## **Additional Heparin Studies**

| Study   | Study<br>Design | Population     | Interv.   | Sample<br>Size | Baseline Charact.      | Outcomes      |
|---------|-----------------|----------------|-----------|----------------|------------------------|---------------|
| Peters, | Retro.          | MICU patients  | Heparin   | BMI < 30:      | <u>Avg. BMI:</u>       | VTE: 12 vs.   |
| et al.  | chart           |                | 5000      | n=285          | < 30: 24.8 ± 3.3       | 18; p=0.222   |
| 2016    | review          |                | units TID | BMI > 30:      | >30: 38.8 ± 8.8        |               |
|         |                 |                |           | n=276          |                        |               |
| Cotter, | Retro.          | Morbidly       | Heparin   | N=107          | Avg. BMI: 51.3 (37-82) | VTE: n=1 (16  |
| et al.  | cohort          | obese patients | 5000      |                | Avg. LOS: 4.3 (3-7)    | days post-    |
| 2005    | study           | undergoing     | units q8h |                | Avg. Risk factors for  | operatively)  |
|         |                 | gastric bypass |           |                | VTE: 3.4 (2-7)         |               |
| Miller, | Retro.          | Roux-en-Y      | Heparin   | N=255          | Avg. BMI: 50           | VTE: n=2      |
| et al.  | review          | Gastric        | 5000 or   |                | Avg. Weight: 138 kg    | Postoperative |
| 2004    |                 | Bypass         | 7500      |                | LOS: 2.2 days (1-94)   | bleeding: n=6 |
|         |                 | Surgery        | units q8h |                |                        |               |

| Study       | Study<br>Des. | Рор.      | Interv.     | Sample<br>Size | Baseline Char.           | Outcomes           |
|-------------|---------------|-----------|-------------|----------------|--------------------------|--------------------|
| Miranda,    | RCT           | Hosp.     | 40mg or     | 40mg:          | Weight                   | Therapeutic aXa:   |
|             |               | obese     | •           | e e            |                          | -                  |
| et al. 2017 |               |           | 60mg SQ     | N=45           | 100 kg [90—111 or 114]   | 31% vs. 69%;       |
|             |               | patients  | daily       | 60mg:          |                          | P=0.007            |
|             |               |           |             | N=46           | BMI                      | Minor bleeding:    |
|             |               |           |             |                | 35-37 [33-40]            | 4% vs. 4%          |
| Alnatsheh,  | Retro.        | Hosp.     | 30mg BID or | Non-obese:     | Weight (kg):             | VTE (no.): 3 vs. 2 |
| et al. 2019 | Cohort        | obese and | 40mg daily  | N=118          | 62 vs. 80 vs. 102        | vs. 3; P=0.81      |
|             | Study         | non-obese |             | Overweight:    | <u>BMI:</u>              |                    |
|             |               | patients  |             | N=112          | 22.1 vs. 27.4 vs. 36.6   |                    |
|             |               |           |             | Obese:         | <u>Median LOS—days</u>   |                    |
|             |               |           |             | N=198          | 6 (4–9) vs. 5 (4–9 vs. 5 |                    |
|             |               |           |             |                | (4-8)                    |                    |
| Al Otaib,   | Prosp.        | Hosp.     | 0.5mg/kg    | N=50           | BMI: 40.5 ± 5 (range:    | Reached target     |
| et al. 2017 | cohort        | obese     | daily       |                | 35-55)                   | aXa level (0.2-    |
|             | study         | surgical  |             |                | Weight: 101 ± 18         | <b>0.6):</b> 88%   |
|             |               | patients  |             |                | (range: 74-150)          |                    |
|             |               |           |             |                | Average dose: 50 ± 9.8   | No VTE or          |
|             |               |           |             |                | mg                       | bleeding           |
|             |               |           |             |                | LOS: 11 ± 7 days         |                    |

| Study     | Study<br>Design | Рор.      | Interv.   | Sample Size  | Baseline Char.     | Outcomes                  |
|-----------|-----------------|-----------|-----------|--------------|--------------------|---------------------------|
| Rondina,  | Prosp.          | Morbidly  | 0.5 mg/kg | N=26         | BMI: 48.1 ± 11.1   | No bleeding events        |
| et al.    | cohort          | obese     | daily     |              | Weight: 135.6 ±    | No VTE                    |
| 2010      | study           | hosp.     |           |              | 25.3 kg            | Avg. aXa level peak: 0.25 |
|           |                 | patients  |           |              | Avg. LOS: 3 days   | +/- 0.11                  |
|           |                 |           |           |              | Avg. dose:         |                           |
|           |                 |           |           |              | 67mg ± 12 mg       |                           |
| Steib,et  | RCT             | Gastric   | 40mg      | 40mg daily:  | Average BMI:       | No thromboembolic events  |
| al. 2015  |                 | bypass    | daily vs. | n=44         | 40mg daily: 49 ± 1 | Bleeding events: n=1,2,6  |
|           |                 | patients  | 60mg      | 60mg daily:  | 60mg daily: 48 ± 1 |                           |
|           |                 |           | daily vs. | n=44         | 40mg BID: 47 ± 1   | Ther. anti-Xa:            |
|           |                 |           | 40mg BID  | 40mg BID:    |                    | 12.8%, 56.4%, 27.3%;      |
|           |                 |           |           | n=47         |                    | P<0.001                   |
| Scholten, | Pros.           | Morbidly  | 30mg BID  | N=481 (30    | Avg. BMI:          | LOS: 5.67 vs. 3.81 days;  |
| et al.    | cohort          | obese     | vs. 40mg  | BID: n=92;   | 51.7 vs. 50.4      | P<0.05                    |
| 2002      | study           | bariatric | BID       | 40 BID: 389) |                    | Post-operative DVT: 5.4%  |
|           |                 | surgery   |           |              | Avg. LOS:          | vs. 0.6%; P<0.01          |
|           |                 | patients  |           |              | 5.67 vs. 3.81 days | Treated hemorrhage: n=1   |
|           |                 |           |           |              | (P < 0.05)         | vs. 1                     |

| Study       | Study<br>Design | Рор.        | Interv.      | Sample Size   | Baseline Char.          | Outcomes            |
|-------------|-----------------|-------------|--------------|---------------|-------------------------|---------------------|
| Scholten,   | Prosp.          | Morbidly    | Enoxaparin   | N=481 (30     | Avg. BMI:               | LOS: 5.67 vs. 3.81  |
| et al. 2002 | cohort          | obese       | 30mg BID vs. | BID: n=92; 40 | 51.7 vs. 50.4           | days; P<0.05        |
|             | study           | patients    | enoxaparin   | BID: 389)     |                         | Post-operative DVT: |
|             |                 | undergoing  | 40mg BID     |               | Avg. LOS:               | 5.4% vs. 0.6%;      |
|             |                 | bariatric   |              |               | 5.67 vs. 3.81 d         | P<0.01              |
|             |                 | surgery     |              |               | (P < 0.05)              | Treated hemorrhage: |
|             |                 |             |              |               |                         | n=1 vs. 1           |
| Steele,     | RCT             | Bariatric   | 40mg BID vs. | N=198 (enox,  | Avg. BMI:               | Ther. aXa:          |
| et al. 2015 |                 | surgical    | fondaparinux | n=98;         | $45.4 \pm 5.4$          | 32.4% vs. 74.2%     |
|             |                 | patients    | 5mg daily    | fonda,        |                         | DVT: 2.4% vs. 2.2%  |
|             |                 |             |              | n=100)        |                         | Minor bleeding:     |
|             |                 |             |              |               |                         | 5.1% vs. 3.0% (NS)  |
| Brunetti,   | Retro.          | Obese       | 40mg SQ      | Enoxaparin:   | <u>Avg. Weight</u>      | aXa >0.1: 93.8% vs. |
| et al. 2019 | Cohort          | patients    | BID vs.      | n=16          | $124.3 \pm 25.5$ vs.    | 4.5%; P<0.0001      |
|             | Study           | undergoing  | heparin      | Hep 5000:     | $140.6\pm21.2$          | VTE: none           |
|             |                 | sleeve      |              | n=7           | <u>Avg. BMI</u>         | Major bleeding: n=1 |
|             |                 | gastrectomy |              | Hep 7500:     | $41.8\pm5.9~\text{vs}.$ | Minor bleeding:     |
|             |                 |             |              | n=37          | $45.8\pm6.9$            | 87.5% vs. 27.3%;    |
|             |                 |             |              |               |                         | P<0.0001            |

| Study       | Study<br>Design | Рор.     | Interv.    | Sample<br>Size | Baseline Char.   | Outcomes             |
|-------------|-----------------|----------|------------|----------------|------------------|----------------------|
| Bickford,   | Prosp.          | Obese    | 0.5mg q12h | N=86           | Avg. BMI:        | Achieved target aXa: |
| et al. 2013 | cohort          | trauma   |            | BMI            | $35.3 \pm 9.8$   | n=74                 |
|             | study           | patients |            |                | Avg. Weight:     |                      |
|             |                 |          |            |                | $113.3\pm30$     | VTE: n=18 (16 before |
|             |                 |          |            |                | Avg. LOS:        | enoxaparin was       |
|             |                 |          |            |                | $9.5\pm1.0$      | initiated)           |
| Ludwig,     | Retro.          | Obese    | 0.5mg q12h | N=23           | BMI:             | Therapeutic aXa: 91% |
| et al. 2011 | cohort          | SICU     |            |                | 46.4 [36-77]     | Bleeding: n=1        |
|             | study           | patients |            |                | Weight:          | Minor bleeding: n=1  |
|             |                 |          |            |                | 136 kg [97-267]  |                      |
|             |                 |          |            |                | LOS              |                      |
|             |                 |          |            |                | 15.8 days [4-39] |                      |

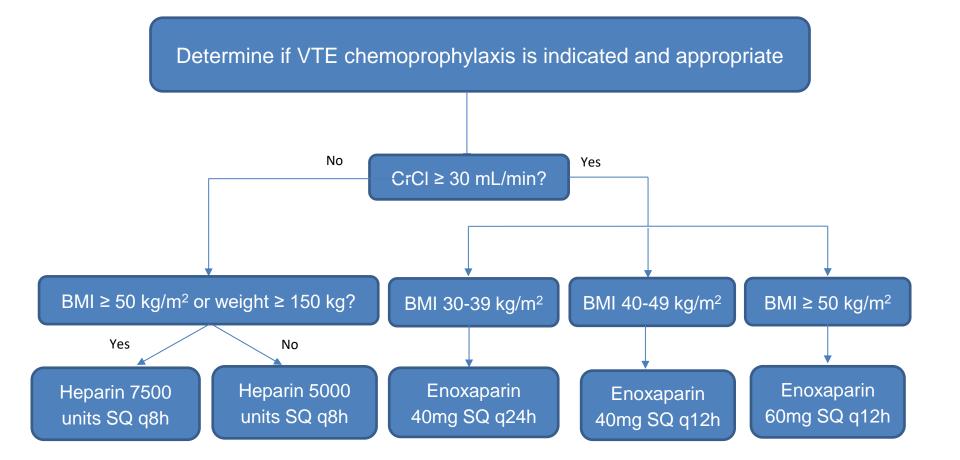
#### Direct oral anticoagulant (DOAC) studies

| Goldhaber SZ, et al. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients (ADOPT). <i>N Engl J Med.</i> 2011 Dec 8;365(23):2167-77. |                                                                                   |                |                 |                                         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|-----------------|-----------------------------------------|--|--|--|
| Population                                                                                                                                                 | Population Intervention Comparator Baseline Char. Outcomes(apixaban vs. enoxapari |                |                 |                                         |  |  |  |
| Hospitalized,                                                                                                                                              | Apixaban                                                                          | Enoxaparin     | BMI > 30 kg/m2: | VTE or VTE-related death at 10 days:    |  |  |  |
| medically ill                                                                                                                                              | 2.5mg PO                                                                          | 40mg SQ daily  | 44.5% vs. 44.3% | 2.71% vs. 3.06%; P=0.44                 |  |  |  |
| patients                                                                                                                                                   | BID                                                                               | for 7 ± 4 days |                 |                                         |  |  |  |
|                                                                                                                                                            |                                                                                   |                |                 | Major bleeding: 0.47% vs. 0.19%; P=0.04 |  |  |  |

| Cohen AT, e                                                                | Cohen AT, et al. Rivaroxaban for thromboprophylaxis in acutely ill medical patients (MAGELLAN). <i>N</i><br>Engl J Med. 2013 Feb 7;368(6):513-23. |               |                            |                                                         |  |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|---------------------------------------------------------|--|--|--|
| Population     Intervention     Comparator     Baseline char.     Outcomes |                                                                                                                                                   |               |                            |                                                         |  |  |  |
|                                                                            |                                                                                                                                                   |               |                            | (rivaroxaban vs. enoxaparin)                            |  |  |  |
| Hospitalized,                                                              | Rivaroxaban                                                                                                                                       | Enoxaparin    | Mean weight:               | VTE or VTE-related death:                               |  |  |  |
| medically ill patients                                                     | 10mg PO<br>daily for 35 ±                                                                                                                         | 40mg SQ daily | 77.5kg vs. 77.3kg          | 2.7% vs. 2.7%; P=0.003 for non-infer.                   |  |  |  |
|                                                                            | 4 days                                                                                                                                            |               | Mean BMI:<br>28.2 vs. 28.2 | Clinically relevant bleeding:<br>2.8% vs. 1.2%; P<0.001 |  |  |  |

#### Recommendations

- In patients with a CrCl < 30 mL/min:
  - If BMI < 50 kg/m2 or weight < 150 kg  $\rightarrow$  UFH 5000 units q8h.
  - − If BMI ≥ 50 kg/m2 or weight ≥ 150 kg → UFH 7500 units q8h.


#### Recommendations

- In patients with a CrCl  $\geq$  30 mL/min:
  - If BMI 30-40 kg/m2  $\rightarrow$  enoxaparin 40mg SQ q24h.
  - If BMI 40-50 kg/m2  $\rightarrow$  enoxaparin 40mg SQ q12h.
  - − If BMI ≥ 50 kg/m2 → enoxaparin 60mg SQ q12h.

### Recommendations

- I recommend the use of LMWH or UFH over the use of DOACs in this population.
- I recommend against the routine use of anti-Xa level monitoring for VTE prophylaxis.

#### **Treatment Algorithm**



# Summary

- Nosocomial VTE remains a concern in hospitalized patients
- More research into optimal dosing for VTE prophylaxis in obese patients is needed

# **Reference for Pharmacists**

 Schünemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. *Blood Adv.* 2018 Nov 27;2(22):3198-3225.

# Acknowledgements

- Tina C. Beck, PharmD, MSCR, BCPS
- Kathleen Lusk, Pharm.D., BCPS
- Russell T. Attridge, PharmD, MSc, BCPS
- Amanda Kitten, PharmD, MSc

Which of the following is a risk factor for developing hospital-acquired VTE?

- A. Active cancer
- B. Chronic obstructive pulmonary disease (COPD)
- C. Cirrhosis
- D. Underweight (BMI < 18.5 kg/m2)

Which of the following is a risk factor for developing hospital-acquired VTE?

- A. Active cancer
- B. Chronic obstructive pulmonary disease (COPD)
- C. Cirrhosis
- D. Underweight (BMI < 18.5 kg/m2)

Which of the following reflects standard dosing of enoxaparin for VTE prophylaxis in non-surgical, hospitalized patients?

- A. Enoxaparin 30mg SQ every 24 hours
- B. Enoxaparin 30mg SQ every 12 hours
- C. Enoxaparin 40mg SQ every 24 hours
- D. Enoxaparin 40mg SQ every 12 hours

Which of the following reflects standard dosing of enoxaparin for VTE prophylaxis in non-surgical, hospitalized patients?

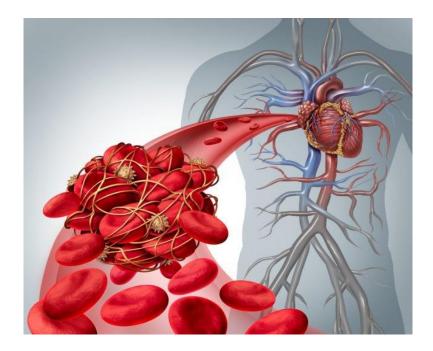
- A. Enoxaparin 30mg SQ every 24 hours
- B. Enoxaparin 30mg SQ every 12 hours
- C. Enoxaparin 40mg SQ every 24 hours
- D. Enoxaparin 40mg SQ every 12 hours

The heparin dosing regimens that have been most studied for VTE prophylaxis in hospitalized obese patients are \_\_\_\_\_ and \_\_\_\_\_

- A. 2500 units SQ q8h; 7500 units SQ q8h
- B. 5000 units SQ q24h; 5000 units SQ q12h
- C. 5000 units SQ q12h; 7500 units SQ q8h
- D. 5000 units SQ q8h; 7500 units SQ q8h

The heparin dosing regimens that have been most studied for VTE prophylaxis in hospitalized obese patients are \_\_\_\_\_ and \_\_\_\_\_

- A. 2500 units SQ q8h; 7500 units SQ q8h
- B. 5000 units SQ q24h; 5000 units SQ q12h
- C. 5000 units SQ q12h; 7500 units SQ q8h
- D. 5000 units SQ q8h; 7500 units SQ q8h


MB is a 75-year-old male with a PMH of VTE, type 2 DM, HTN, and heart failure with reduced ejection fraction (HFrEF) who is admitted to the medical ward for HF exacerbation treatment. The patient's weighs 125 kg (BMI 35 kg/m<sup>2</sup>) and has a creatinine clearance of 120 mL/min (SCr at baseline). Which of the following enoxaparin regimens for VTE prophylaxis are most appropriate for MB?

- A. Enoxaparin 30mg SQ q24h
- B. Enoxaparin 40mg SQ q24h
- C. Enoxaparin 40mg SQ q12h
- D. Enoxaparin 60mg SQ q12h

MB is a 75-year-old male with a PMH of VTE, type 2 DM, HTN, and heart failure with reduced ejection fraction (HFrEF) who is admitted to the medical ward for HF exacerbation treatment. The patient's weighs 125 kg (BMI 35 kg/m<sup>2</sup>) and has a creatinine clearance of 120 mL/min (SCr at baseline). Which of the following enoxaparin regimens for VTE prophylaxis are most appropriate for MB?

- A. Enoxaparin 30mg SQ q24h
- B. Enoxaparin 40mg SQ q24h
- C. Enoxaparin 40mg SQ q12h
- D. Enoxaparin 60mg SQ q12h

#### Venous Thromboembolism Prophylaxis in Hospitalized Obese Patients: Dose it Matter?



#### Taylor M. Benavides, Pharm.D. PGY-2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy San Antonio, TX November 20, 2020